Author:
Li Ye-Jun,Guo Jing,Ma Jun-Ping,Tang Xian,Li Xin,Yan Bing, ,
Abstract
In the low temperature environment generated by supersonic flow in the process of laser assisted retardation of condensation of isotope separation for BCl<sub>3</sub>, the molecular isotopes BCl<sub>3</sub> and carrier gas (rare gas (RG): He, Ne, Ar, Kr, Xe) can form BCl<sub>3</sub>:RG dimer via contact collision process. The mechanism and relationship between dimer concentration and absolute temperature of dimer involving BCl<sub>3</sub> molecules are of great significance for regulating and selecting the isotope separation parameters. In this work, based on the analytic description of the anharmonic interaction potential function of BCl<sub>3</sub>:RG, and considering the two-body and three-body collision induced association and dissociation of dimers, the concentration of BCl<sub>3</sub>:RG dimers is obtained at the absolute temperature in a range of 20–40 K. The obtained results are as follows. The two-body collision is dominant in the formation of dimer in the low temperature range. When the initial molar fraction of BCl<sub>3</sub> is in a range of 0.01–0.10, the BCl<sub>3</sub>:RG dimer concentration changes approximately linearly with the initial molar fraction of BCl<sub>3</sub>, indicating that the initial molar fraction not only determines the theoretical upper limit of the dimer concentration, but also dominates the dimer concentration in a low temperature range. When the temperature of the supersonic flow chamber is about 20 K, the concentration of BCl<sub>3</sub>:Kr dimers is largest, and the concentrations of other dimers are also presented. Furthermore, we explain the mechanism of laser assisted retardation of condensation in separation of isotopes by using a simple model on a molecular scale by adjusting the parameters of dissociation energy and stretching vibration frequency of the dimer.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献