Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields

Author:

Zeng Ping,Song Pan,Wang Xiao-Wei,Zhao Jing,Zhang Dong-Wen,Yuan Jian-Min,Zhao Zeng-Xiu, , ,

Abstract

We study experimentally the three-body Coulomb explosion dynamics of carbon dioxide dimer <inline-formula><tex-math id="M5">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.png"/></alternatives></inline-formula> ions produced by intense femtosecond laser field. The three-dimensional momentum vectors as well as kinetic energy are measured for the correlated fragmental ions in a cold-target recoil-ion momentum spectrometer (COLTRIMS). Carbon dioxide dimer is produced during the supersonic expansion of <inline-formula><tex-math id="M6">\begin{document}${\rm{(CO_2)_2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.png"/></alternatives></inline-formula> gas from a 30 μm nozzle with 10 bar backing pressure. The linearly polarized laser pulses with a pulse duration (full width at half maximum of the peak intensity) of 25 fs, a central wavelength of 790 nm, a repetition rate of 10 kHz, and peak laser intensities on the order of <inline-formula><tex-math id="M8">\begin{document}${\rm{8 \times10^{14}}}\;{\rm{W/cm^2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.png"/></alternatives></inline-formula> are produced by a femtosecond Ti:sapphire multipass amplification system. We concentrate on the three-particle breakup channel <inline-formula><tex-math id="M10">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+{\rm{CO^+}}+ {\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.png"/></alternatives></inline-formula>. The two-particle breakup channels, <inline-formula><tex-math id="M15">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+ {\rm{CO_{2}}^{2+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}${\rm{CO_2^{2+}}\rightarrow CO^++O^+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.png"/></alternatives></inline-formula>, are selected as well for reference. The fragmental ions are guided by a homogenous electric field of 60 V/cm toward microchannel plates position-sensitive detector. The time of flight (TOF) and position of the fragmental ions are recorded to reconstruct their three-dimensional momenta. By designing some constraints to filter the experimental data, we select the data from different dissociative channels. The results demonstrate that the three-body Coulomb explosion of <inline-formula><tex-math id="M20">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.png"/></alternatives></inline-formula> ions break into <inline-formula><tex-math id="M21">\begin{document}${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.png"/></alternatives></inline-formula> through two mechanisms: sequential fragmentation and non-sequential fragmentation, in which the sequential fragmentation channel is dominant. These three fragmental ions are produced almost instantaneously in a single dynamic process for the non-sequential fragmentation channel but stepwise for the sequential fragmentation. In the first step, the weak van der Waals bond breaks, <inline-formula><tex-math id="M22">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.png"/></alternatives></inline-formula> dissociates into two <inline-formula><tex-math id="M23">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.png"/></alternatives></inline-formula> ions; and then one of the C=O covalent bonds of <inline-formula><tex-math id="M24">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.png"/></alternatives></inline-formula> breaks up, the <inline-formula><tex-math id="M25">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.png"/></alternatives></inline-formula> ion breaks into <inline-formula><tex-math id="M26">\begin{document}${\rm{CO^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.png"/></alternatives></inline-formula>. The time interval between the two steps is longer than the rotational period of the intermediate <inline-formula><tex-math id="M28">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.png"/></alternatives></inline-formula> ions, which is demonstrated by the circle structure exhibited in the Newton diagram. We find that the sequential fragmentation channel plays a dominant role in the three-body Coulomb explosion of <inline-formula><tex-math id="M29">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.png"/></alternatives></inline-formula> ions in comparison of the event ratio of the two fragmentation channels.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3