Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields
-
Published:2023
Issue:18
Volume:72
Page:187901
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Zeng Ping,Song Pan,Wang Xiao-Wei,Zhao Jing,Zhang Dong-Wen,Yuan Jian-Min,Zhao Zeng-Xiu, , ,
Abstract
We study experimentally the three-body Coulomb explosion dynamics of carbon dioxide dimer <inline-formula><tex-math id="M5">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M5.png"/></alternatives></inline-formula> ions produced by intense femtosecond laser field. The three-dimensional momentum vectors as well as kinetic energy are measured for the correlated fragmental ions in a cold-target recoil-ion momentum spectrometer (COLTRIMS). Carbon dioxide dimer is produced during the supersonic expansion of <inline-formula><tex-math id="M6">\begin{document}${\rm{(CO_2)_2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M6.png"/></alternatives></inline-formula> gas from a 30 μm nozzle with 10 bar backing pressure. The linearly polarized laser pulses with a pulse duration (full width at half maximum of the peak intensity) of 25 fs, a central wavelength of 790 nm, a repetition rate of 10 kHz, and peak laser intensities on the order of <inline-formula><tex-math id="M8">\begin{document}${\rm{8 \times10^{14}}}\;{\rm{W/cm^2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M8.png"/></alternatives></inline-formula> are produced by a femtosecond Ti:sapphire multipass amplification system. We concentrate on the three-particle breakup channel <inline-formula><tex-math id="M10">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+{\rm{CO^+}}+ {\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M10.png"/></alternatives></inline-formula>. The two-particle breakup channels, <inline-formula><tex-math id="M15">\begin{document}${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+ {\rm{CO_{2}}^{2+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M15.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}${\rm{CO_2^{2+}}\rightarrow CO^++O^+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M19.png"/></alternatives></inline-formula>, are selected as well for reference. The fragmental ions are guided by a homogenous electric field of 60 V/cm toward microchannel plates position-sensitive detector. The time of flight (TOF) and position of the fragmental ions are recorded to reconstruct their three-dimensional momenta. By designing some constraints to filter the experimental data, we select the data from different dissociative channels. The results demonstrate that the three-body Coulomb explosion of <inline-formula><tex-math id="M20">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M20.png"/></alternatives></inline-formula> ions break into <inline-formula><tex-math id="M21">\begin{document}${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M21.png"/></alternatives></inline-formula> through two mechanisms: sequential fragmentation and non-sequential fragmentation, in which the sequential fragmentation channel is dominant. These three fragmental ions are produced almost instantaneously in a single dynamic process for the non-sequential fragmentation channel but stepwise for the sequential fragmentation. In the first step, the weak van der Waals bond breaks, <inline-formula><tex-math id="M22">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M22.png"/></alternatives></inline-formula> dissociates into two <inline-formula><tex-math id="M23">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M23.png"/></alternatives></inline-formula> ions; and then one of the C=O covalent bonds of <inline-formula><tex-math id="M24">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M24.png"/></alternatives></inline-formula> breaks up, the <inline-formula><tex-math id="M25">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M25.png"/></alternatives></inline-formula> ion breaks into <inline-formula><tex-math id="M26">\begin{document}${\rm{CO^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${\rm{O^+}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M27.png"/></alternatives></inline-formula>. The time interval between the two steps is longer than the rotational period of the intermediate <inline-formula><tex-math id="M28">\begin{document}${\rm{CO}}_{2}^{2+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M28.png"/></alternatives></inline-formula> ions, which is demonstrated by the circle structure exhibited in the Newton diagram. We find that the sequential fragmentation channel plays a dominant role in the three-body Coulomb explosion of <inline-formula><tex-math id="M29">\begin{document}${\rm{(CO_2)}}_{2}^{4+}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20230699_M29.png"/></alternatives></inline-formula> ions in comparison of the event ratio of the two fragmentation channels.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference36 articles.
1. Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819 2. Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Nat. Commun. 3 1113 3. Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402 4. Kim H K, Gassert H, Schöffler M S, Titze J N, Waitz M, Voigtsberger J, Trinter F, Becht J, Kalinin A, Neumann N, Zhou C, Schmidt L Ph H, Jagutzki O, Czasch A, Merabet H, Schmidt-Böcking H, Jahnke T, Cassimi A, Dörner R 2013 Phys. Rev. A 88 042707 5. Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139
|
|