Experimental study on capillary discharge for laser plasma wake acceleration

Author:

Zhu Xin-Zhe,Li Bo-Yuan,Liu Feng,Li Jian-Long,Bi Ze-Wu,Lu Lin,Yuan Xiao-Hui,Yan Wen-Chao,Chen Min,Chen Li-Ming,Sheng Zheng-Ming,Zhang Jie, , ,

Abstract

Preformed plasma channels play important roles in many applications, such as laser wakefield acceleration, plasma lens, and so on. Laser pulses can be well guided when the radial density distribution of the plasma channel has a parabolic profile and it is matched with the laser focus. Discharging a gas-filled capillary is a possible way to form such plasma channels. In this work, we report the capillary discharging and laser guiding experiments performed in the Laboratory for Laser Plasmas at Shanghai Jiao Tong University. The plasma density distributions in the Helium-filled discharged capillary are measured by using the spectral broadening method. In a capillary with a length of 3 cm and a diameter of 300 μm, the plasma density profile is observed to be uniformly distributed along the axial direction and have a parabolic profile along the radial direction. Parameters for plasma channel generation are scanned. The deepest channel depth obtained is 28 μm, which is close to the focal spot radius of the laser used in the experiment. Laser guidance in the plasma channel is also studied. The results show that the laser can maintain its focus and continuously propagate when the channel depth matches the focal spot, indicating that the well guiding of the laser pulse by the preformed plasma channel is obtained. These studies may serve as the ground work for the future studies, such as staged laser wakefield acceleration and phase-locked wakefield acceleration.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3