Plasma density transition-based electron injection in laser wake field acceleration driven by a flying focus laser

Author:

Geng Pan-Fei,Chen Min,An Xiang-Yan,Liu Wei-Yuan,Zhu Xin-Zhe,Li Jian-Long,Li Bo-Yuan,Sheng Zheng-Ming

Abstract

By using a high-intensity flying focus laser, the dephasingless [Phys. Rev. Lett. 124 134802 (2020)] or phase-locked [Nat. Photon. 14 475 (2020)] laser wakefield acceleration (LWFA) can be realized, which may overcome issues of laser diffraction, pump depletion, and electron dephasing which are always suffered in usual LWFA. The scheme thus has the potentiality to accelerate electrons to TeV energy in a single acceleration stage. However, the controlled electron injection has not been self-consistently included in such schemes. Only external injection was suggested in previous theoretical studies, which requires other accelerators and is relatively difficulty to operate. Here, we numerically study the actively controlled density transition injection in phase-locked LWFA to get appropriate density profiles for amount of electron injection. The study shows that compared with LWFA driven by lasers with fixed focus, a larger plasma density gradient is necessary. Electrons experience both transverse and longitudinal loss during acceleration due to the superluminal group velocity of the driver and the variation of the wakefield structure. Furthermore, the periodic deformation and fracture of the flying focus laser in the high-density plasma plateau make the final injected charge also depend on the beginning position of the density downramp. Our studies show a possible way for amount of electron injection in LWFA driven by flying focus lasers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3