Author:
Li Shun,Li Zheng-Jun,Qu Tan,Li Hai-Ying,Wu Zhen-Sen, , ,
Abstract
Based on the generalized Lorenz Mie theory, the propagation and scattering properties of a uniaxial anisotropic spherical particle illuminated separately by double zero-order Bessel beam with arbitrary propagation direction and polarization direction are studied. The propagation and scattering characteristics are compared with those of a uniaxial anisotropic spherical particle illuminated by a single zero-order Bessel beam. Using the orthogonal relation of the spherical vector wave function and coordinate rotation theorem, the expanded forms of double zero-order Bessel beams with arbitrary propagation direction and polarization direction are derived. The analytical expressions of the expansion coefficients are derived by the integral method. The expansion coefficients of total incident field are obtained through the vector superposition principle. Based on the Fourier transform and tangentially continuous boundary conditions, the internal electromagnetic field of the uniaxial anisotropic sphere is expanded in terms of the spherical vector wave function and the scattering coefficients are derived. By comparing the angular distribution of the radar cross section of the particle illuminated by single and double zero-order Bessel beam when degenerating into plane waves with those results given by the literature, the correctness of the theory and the program in this paper are both verified. The effects of the incidence angle, conic angle and polarization angle on angle distribution of the radar cross section are numerically analyzed. The theoretical and numerical results in this paper are expected to be used to study the scattering properties, particle size analysis and optical trapping for anisotropic particles, biological cells and other particles illuminated by multi-beams.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献