Light scattering of a uniform uniaxial anisotropic sphere by an on-axis high-order Bessel vortex beam

Author:

Li Zheng Jun1,Yang Xiao JinORCID,Qu Tan1,Li Hai Ying,Wu Zhen Sen

Affiliation:

1. Xidian University

Abstract

Analytical solutions to the scattering of a uniform uniaxial anisotropic sphere illuminated by an on-axis high-order Bessel vortex beam (HOBVB) are investigated. Using the vector wave theory, the expansion coefficients of the incident HOBVB in terms of the spherical vector wave functions (SVWFs) are obtained. According to the orthogonality of the associated Legendre function and exponential function, more concise expressions of the expansion coefficients are derived. It can reinterpret the incident HOBVB faster compared with the expansion coefficients of double integral forms. The internal fields of a uniform uniaxial anisotropic sphere are proposed in the integrating form of the SVWFs by introducing the Fourier transform. The differences of scattering characteristics of a uniaxial anisotropic sphere illuminated by a zero-order Bessel beam, Gaussian beam, and HOBVB are exhibited. Influences of the topological charge, conical angle, and particle size parameters on the angle distributions of the radar cross section are analyzed in detail. The scattering and extinction efficiencies varied with the particle radius, conical angle, permeability, and dielectric anisotropy are also discussed. The results provide insights into the scattering and light–matter interactions and may find important applications in optical propagation and optical micromanipulation of biological and anisotropic complex particles.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

111 Project, China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3