Research progress of novel properties in several van der Waals ferroelectric materials

Author:

Jin Xin,Tao Lei,Zhang Yu-Yang,Pan Jin-Bo,Du Shi-Xuan, , , ,

Abstract

Ferroelectric (FE) materials possess electrically switchable spontaneous polarizations, showing broad applications in various functional devices. For the miniaturization of electronic devices, two-dimensional (2D) van der Waals (vdW) ferroelectric materials and the corresponding bulk counterparts have aroused more interest of researchers. Recently, several kinds of 2D vdW ferroelectrics have been fabricated in experiment. These 2D vdW FEs, as well as their bulk counterparts, exhibit novel properties as demonstrated in experiment or predicted in theory. This paper is to review the recent progress of novel properties of several vdW ferroelectrics. In Section II, we introduce the unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP<sub>2</sub>S<sub>6</sub>). The electric field drives the Cu atoms to unidirectionally cross the vdW gaps, which is distinctively different from dipole reorientation, resulting in an unusual phenomenon that the polarization of CuInP<sub>2</sub>S<sub>6</sub> aligns against the direction of the applied electric field. The potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and making CuInP<sub>2</sub>S<sub>6</sub> a rare example of a uniaxial multi-well ferroelectric. In Section III, we introduce the distinct geometric evolution mechanism of the newly reported M<sub>2</sub>Ge<sub>2</sub>Y<sub>6</sub> (M = metal, X = Si, Ge, Sn, Y = S, Sn, Te) monolayers and a high throughput screening of 2D ferroelectric candidates based on this mechanism. The ferroelectricity of M<sub>2</sub>Ge<sub>2</sub>Y<sub>6</sub> originates from the vertical displacement of Ge-dimer in the same direction driven by a soft phonon mode of the centrosymmetric configuration. Another centrosymmetric configuration is also dynamically stable but higher in energy than the ferroelectric phase. The metastable centrosymmetric phase of M<sub>2</sub>Ge<sub>2</sub>Y<sub>6</sub> monolayers allows a new two-step ferroelectric switching path and may induce novel domain behaviors. In Section IV, a new concept about constructing 2D ferroelectric QL-M<sub>2</sub>O<sub>3</sub>/graphene heterostructure to realize monolayer-based FE tunnel junctions or potentially graphene p-n junctions is reviewed. These findings provide new perspectives of the integration of graphene with monolayer FEs, as well as related functional devices. Finally, the challenge and prospect of vdW ferroelectrics are discussed, providing some perspective for the field of ferroelectrics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3