Design and application of flat spiral phase plate

Author:

Wu Wen-Bing,Sheng Zong-Qiang,Wu Hong-Wei, ,

Abstract

Phase is an important characteristic of electromagnetic waves. It is well known that a beam with a helical wave front characterized by a phase of <inline-formula><tex-math id="M1">\begin{document}$\exp({\rm{i}}l\theta )$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20181677_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20181677_M1.png"/></alternatives></inline-formula> (which depends on azimuthal angle <inline-formula><tex-math id="M2">\begin{document}$\theta$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20181677_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20181677_M2.png"/></alternatives></inline-formula> and topological charge <i>l</i>), has a momentum component along the azimuthal direction, resulting in an orbital angular momentum of per photon along the beam axis. Owing to its fascinating properties, the beam has received a great deal of attention and has provided novel applications in manipulation of particles or atoms, optical communication, optical data storage. In order to meet the needs of various applications, techniques for efficiently generating optical beams carrying orbital angular momentum are always required. Current schemes for generating the beams carrying orbital angular momentum include computer-generated holograms, spiral phase plates, spatial light modulators, and silicon integrated optical vortex emitters. Among the usual methods to produce helical beams, the traditional spiral phase plate is an optical device that utilizes the progressive increasing of height of a dielectric material along an azimuthal direction to produce a vortex beam for beam phase modulation with a high conversion efficiency. However, it is difficult to regulate the topological charge <i>l</i> of the outgoing beam through the superposition of the phase plates due to the special geometric feature. In this paper, the flat spiral phase plate is designed by compressing the height of traditional spiral phase plate, and inducing the refractive index to increase in the azimuthal direction based on coordinate transformation. By means of theoretical analysis and numerical simulation, it is found that the flat spiral phase plate can produce high quality vortex beams just as the traditional spiral phase plate can do. Particularly, the height of the flat spiral phase plate and the topological charge <i>l</i> carried by the vortex beams can be arbitrarily adjusted according to the refractive index selection of the dielectric material. In order to meet the needs of practical applications, the vortex beams with different topological charges can be obtained by stacking multiple layers of flat spiral phase plates. The flat spiral phase plate has broad potential applications in the fields of optical transmission and optical communication.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3