Author:
Chen Li-Xiang ,Zhang Yuan-Ying ,
Abstract
Photons are an ideal candidate for encoding both classical and quantum information. Besides spin angular momentum associated with circular polarization, single photon can also carry other fundamentally new degree of freedom of orbital angular momentum related to the spiral phase structure of light. The key significance of orbital angular momentum lies in its potential in realizing a high-dimensional Hilbert space and in encoding a high-dimensional quantum information. Since Allen et al. [Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185] recognized the physical reality of photon orbital angular momentum in 1992, rapidly growing interest has been aroused in orbital angular momentum (OAM) from both classical and quantum points of view. Here we present an overall review on the high-order orbital angular momentum of photon, including its preparation and manipulation based on some specific techniques and also its applications. The spatial light modulator is a commercial device that has been widely employed to generate the OAM beams. We make and identify the optical OAM superposition with very high quantum numbers up to l=360. Recently, the metallic spiral phase mirrors were also developed to produce high-order OAM beams up to l=5050. In addition, the Q-plates made of anisotropic and inhomogeneous liquid crystals were invented to generate high-order OAM beams in a polarization-controllable manner, and the OAM superposition of l=± 50 were achieved. Owing to high rotational symmetry, these high OAM beams have been found to have more and more important applications in the fields of high-sensitivity sensing and high-precision measurements. Two fascinating examples are discussed in detail. The first example is that the research group led by Prof. Zeilinger has prepared and observed the quantum entanglement of high orbital angular momenta up to l=±300 by the technique of polarization-OAM entanglement swapping, and they demonstrated that the angular resolution could be significantly improved by a factor of l. Their result was the first step for entangling and twisting even macroscopic, spatially separated objects in two different directions. The second example is that the research group led by Prof. Padgett has demonstrated an elegant experiment of rotational Doppler effects for visible light with l=±20 OAM superposition. They showed that a spinning object with an optically rough surface might induce a Doppler effect in light reflected from the direction parallel to the rotation axis, and the frequency shift was proportional to both the disk's angular speed and the optical OAM. The potential applications in noncontact measurement of angular speed and in significant improvement of angular resolution for remote sensing will be particularly fascinating.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 端面离焦泵浦薄片涡旋光激光器;Laser & Optoelectronics Progress;2023
2. 高峰值功率声光调Q厄米-高斯模固体激光器;Acta Optica Sinica;2022
3. 微片Nd∶YAG涡旋光激光器研究;Acta Optica Sinica;2022
4. 光子径向模式:光场调控及量子信息应用进展;Acta Optica Sinica;2022
5. 轨道角动量模间干涉的少模光纤温度传感研究;Laser & Optoelectronics Progress;2021