Determination of the symmetry of the highest occupied molecular orbitals of SF6

Author:

Wu Rui-Qi,Guo Ying-Chun,Wang Bing-Bing, ,

Abstract

Quantum chemical calculation is an important method to investigate the molecular structures for multi-atom molecules. The determination of electronic configurations and the accurate description of the symmetry of molecular orbitals are critical for understanding molecular structures. For the molecules belonging to high symmetry group, in the quantum chemical calculation the sub-group is always adopted. Thus the symmetries of some electric states or some molecular orbitals, which belong to different types of representations of high symmetry group, may coincide in the sub-group presentations. Therefore, they cannot be distinguished directly from the sub-group results. In this paper, we provide a method to identify the symmetry of molecular orbitals from the theoretical sub-group results and use this method to determine the symmetry of the highest occupied molecular orbitals (HOMO) of the sulfur hexafluoride SF<sub>6</sub> molecule as an example. Especially, as a good insulating material, an important greenhouse gas and a hyper-valent molecule with the high octahedral <inline-formula><tex-math id="M11">\begin{document}$ O_h $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M11.png"/></alternatives></inline-formula> symmetry, SF<sub>6</sub> has received wide attention for both the fundamental scientific interest and practical industrial applications. Theoretical work shows that the electronic configuration of ground electronic state <inline-formula><tex-math id="M13">\begin{document}$ ^1{\rm A_{1g}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M13.png"/></alternatives></inline-formula> of SF<sub>6</sub> is <inline-formula><tex-math id="M15">\begin{document}${({\rm {core}})^{22}}{(4{\rm a_{1\rm g}})^2}{(3{{\rm t}_{1\rm u}})^6}{(2{{\rm e}_{\rm g}})^4}{(5{{\rm a}_{1\rm g}})^2}{(4{{\rm t}_{1\rm u}})^6}{(1{{\rm t}_{2\rm g}})^6}{(3{{\rm e}_{\rm g}})^4}{(1{{\rm t}_{2\rm u}})^6}{(5{{\rm t}_{1\rm u}})^6}{(1{{\rm t}_{1\rm g}})^6} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M15.png"/></alternatives></inline-formula> and the symmetry of the HOMOs is <inline-formula><tex-math id="M16">\begin{document}$ T_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M16.png"/></alternatives></inline-formula>. However, in some literature, the symmetry of HOMOs of SF<sub>6</sub> has been written as <inline-formula><tex-math id="M18">\begin{document}$ T_{2g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M18.png"/></alternatives></inline-formula> instead of <inline-formula><tex-math id="M19">\begin{document}$ T_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M19.png"/></alternatives></inline-formula>. The reason for this mistake lies in the fact that in the ab initial quantum chemical calculation used is the Abelian group <inline-formula><tex-math id="M20">\begin{document}$ D_{2h} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M20.png"/></alternatives></inline-formula>, which is the sub-group of <inline-formula><tex-math id="M21">\begin{document}$ O_h $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M21.png"/></alternatives></inline-formula>, to describe the symmetries of molecular orbitals of SF<sub>6</sub>. However, there does not exist the one-to-one matching relationship between the representations of <inline-formula><tex-math id="M23">\begin{document}$ D_{2h} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M23.png"/></alternatives></inline-formula> group and those of <inline-formula><tex-math id="M24">\begin{document}$ O_h $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M24.png"/></alternatives></inline-formula> group. For example, both irreducible representations <inline-formula><tex-math id="M25">\begin{document}$ T_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M25.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M26">\begin{document}$ T_{2g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M26.png"/></alternatives></inline-formula> of <inline-formula><tex-math id="M27">\begin{document}$ O_h $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M27.png"/></alternatives></inline-formula> group are reduced to the sum of <inline-formula><tex-math id="M28">\begin{document}$ B_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M28.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M29">\begin{document}$ B_{2g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M29.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M30">\begin{document}$ B_{3g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M30.png"/></alternatives></inline-formula> of <inline-formula><tex-math id="M31">\begin{document}$ D_{2h} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M31.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M31.png"/></alternatives></inline-formula>. So the symmetry of the orbitals needs to be investigated further to identify whether it is <inline-formula><tex-math id="M32">\begin{document}$ T_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M32.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M32.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M33">\begin{document}$ T_{2g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M33.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M33.png"/></alternatives></inline-formula>. In this work, we calculate the orbital functions in the equilibrium structure of ground state of SF<sub>6</sub> by using HF/6-311G* method, which is implemented by using the Molpro software. The expressions of the HOMO functions which are triplet degenerate in energy are obtained. Then by exerting the symmetric operations of <inline-formula><tex-math id="M35">\begin{document}$ O_h $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M35.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M35.png"/></alternatives></inline-formula> group on three HOMO functions, we obtain their matrix representations and thus their characters. Finally, the symmetry of the HOMOs is verified to be <inline-formula><tex-math id="M36">\begin{document}$ T_{1g} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M36.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20182231_M36.png"/></alternatives></inline-formula>. By using this process, we may determine the molecular orbital symmetry of any other molecules with high symmetry group.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3