Quantum chemical calculation of normal vibration frequencies of polyatomic molecules

Author:

Xu You-Jie,Guo Ying-Chun,Wang Bing-Bing, , ,

Abstract

Quantum calculation of molecular vibrational frequency is important in investigating infrared spectrum and Raman spectrum. In this work, a low computational cost method of calculating the quantum chemistry of vibrational frequencies for large molecules is proposed. Usually, the calculation of vibrational frequency of a molecule containing <i>N</i> atoms needs to deal with the Hessian matrix, which consists of second derivatives of the 3<i>N</i>-dimensional potential hypersurface, and then solve secular equations of the matrix to obtain normal vibration modes and the corresponding frequencies. Larger <i>N</i> implies higher computational cost. Therefore, for a limited computational hardware condition, higher-level computations for large <i>N</i> atomic molecule’s vibrational frequencies cannot be implemented in practice. Here we solve this problem by calculating the vibrational frequency for only one vibrational mode each time instead of calculating the Hessian matrix to obtain all vibrational frequencies. When only one vibrational mode is taken into consideration, the molecular potential hypersurface can be transformed into one-dimensional curve. Hence, we can calculate the curve with high-level computational method, then deduce the expression of one-dimensional curve by using harmonic oscillating approximation and obtain the vibrational frequency by using the expression to fit the curve. It should be noted that this method is applied to vibrational modes whose vibrational coordinates can be completely determined by equilibrium geometry and the molecular symmetry and be independent of the molecular force constants. It requires that there exists no other vibrational mode with the same symmetry but with different frequencies. The lower computational cost for a one-dimensional potential curve than that for 3<i>N</i>-dimensional potential hypersurface’s second derivatives permits us to use higher-level method and larger basis set for a given computational hardware condition to achieve more accurate results. In this paper we take the calculation of<i> B</i><sub>2</sub> vibrational frequency of water molecule for example to illustrate the feasibility of this method. Furthermore, we use this method to deal with the SF<sub>6</sub> molecule. It has 7 atoms and 70 electrons, hence there exists a large amount of electronic correlation energy to be calculated. The MRCI is an effective method to calculate the correlation energy. But by now no MRCI result of SF<sub>6</sub> vibrational frequencies has been reported. So here we use MRCI/6-311G* to calculate the potential curves of A<sub>1g</sub>, E<sub>g</sub>, T<sub>2g</sub> and T<sub>2u</sub> vibrational modes separately, deduce their expressions, then use the expressions to fit the curves, and finally obtain the vibrational frequencies. The results are then compared with those obtained by other theoretical methods including HF, MP2, CISD, CCSD(T) and B3LYP methods through using the same 6-311G* basis set. It is shown that the relative error to experimental result of the MRCI method is the least in the results from all these methods.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Xu G X, Li L M, Wang D M 2009 Quantum Chemistry (Vol. 2) (2nd Ed.) (Beijing: Science Press) pp342, 343 (in Chinese)
徐光宪, 黎乐民, 王德民 2009 量子化学(中)(第二版) (北京: 科学出版社) 第342, 343页

2. Li C X, Guo Y C, Wang B B 2017 Acta Phys. Sin. 66 103101
李晨曦, 郭迎春, 王兵兵 2017 物理学报 66 103101

3. Johnson R D Computational Chemistry Comparison and Benchmark Data Base, https://cccbdb.nist.gov/vibs1x.asp [2021-11-10]

4. Zhou L R, Han D, Zhao M Y, Zhang G Q 2020 Trans. Chin. Electrotech. Soc. 35 4998
周朕蕊, 韩冬, 赵明月, 张国强 2020 电工技术学报 35 4998

5. Okubo H, Beroual A 2011 IEEE Electr. Insul. Mag. 27 34

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3