Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure

Author:

Gao Tan-Hua ,Zheng Fu-Chang ,Wang Xiao-Chun , ,

Abstract

The structural stability, electronic and magnetic properties of semihydrogenated graphene and monolayer boron nitride (H-Gra@BN) composite system are studied by the first principles calculation. First, for the six possible stacked configurations of H-Gra@BN in three kinds of magnetic coupling manners, including the nonmagnetic, ferromagnetic and antiferromagnetic, the geometry optimization structures are calculated. The formation energies (Ef) are -28, -37, -40, -35, -28, and -34 meV/atom for AA-B, AA-N, AB-B, AB-B-H, AB-N and AB-N-H configurations of H-Gra@BN, respectively. The details of the six H-Gra@BN configurations are presented. The results show that the AB-B configuration of H-Gra@BN system is most stable with the largest formation energy in the six configurations. Its thickness is the smallest in all six configurations. The formation energies of all configurations are very close to each other and show that the combination of the interlayer between layers is very weak, The interaction between H-Gra and monolayer BN is van der Waals binding. Second, the band structure, total density of states (TDOS), partial density of states and polarization charge density of the most stable H-Gra@BN system are systematically analyzed. This material is ferromagnetic semiconductor. The band gaps for majority and minority spin electrons are 3.097 eV and 1.798 eV, respectively. Each physical cell has an about 1 μB magnetic moment, which is mainly derived from the contribution of the unhydrogenated C2 atom. Furthermore, while the pressure is applied along the z direction, we analyze the TDOS and band structure of H-Gra@BN system, and find that when the z axis strain is more than -10.48% (Δh=-0.45 Å), the valence band maximum of minority spin moves down. The conduction band minimum of minority spin moves from the high symmetry Γ position into a position between Γ and K. The electronic properties of the most stable H-Gra@BN system change from magnetic semiconductor into half metal. When the strain is increased by more than -11.65% (Δh=-0.5 Å), the most stable H-Gra@BN changes into a nonmagnetic metal. To analyze the effect caused by different strains, we analyze the difference in three-dimensional charge density, and find that with the decrease of the layer spacing, the interlayer interaction gradually increases and shows the obvious covalent bond characteristics. This paper predicts a new type of two-dimensional material of which the electronic and magnetic properties can be easily tuned by pressure, and it is expected to be used in nano-devices and serve as an intelligent building material.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3