Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond

Author:

Wang Cheng-Jie ,Shi Fa-Zhan ,Wang Peng-Fei ,Duan Chang-Kui ,Du Jiang-Feng , , , , ,

Abstract

Magnetic field measurement and imaging with nanometer resolution is a key tool in the study of magnetism. There have been several powerful techniques such as superconducting quantum interference device, hall sensor, electron microscopy, magnetic force microscopy and spin polarized scanning tunneling microscopy. However, they either have poor sensitivity or resolution, or need severe environment of cryogenic temperature or vacuum. The nitrogen-vacancy color center (NV center) in diamond, serving as a quantum magnetic sensor, has great advantages such as long decoherence time, atomic size, and ambient working conditions. The NV center consists of a substitutional nitrogen atom and an adjacent vacancy in diamond. Its electronic structure of ground state is a spin triplet. The spin state can be initialized to mS=0 state and read out by laser pulse, and coherently manipulated by microwave pulse. It is sensitive to the magnetic field by measuring the magnetic Zeeman splitting or quantum phase in quantum interferometer strategies. By using dynamical decoupling sequence to prolong the decoherence time, the sensitivities approach to nano tesla for a single NV center and pico tesla for the NV center ensemble, respectively. As a sensor with an atomic size, it reaches single-nuclear-spin sensitivity and sub-nanometer spatial resolution. Combining with scanning microscopy technology, it can accomplish high-sensitivity and high-resolution magnetic field imaging so that the stray field can be reconstructed quantitatively. The magnetic field is calculated from the two resonant frequencies by solving the Hamiltonian of NV center in order to obtain the value of stray field. Recently, this novel magnetic imaging technique has revealed the magnetization structures of many important objects in magnetism research. The polarity and chirality of magnetic vortex core are determined by imaging its stray field; laser induced domain wall hopping is observed quantitatively with a nanoscale resolution; non-linear antimagnetic order is imaged in real space by NV center. It was recently reported that magnetization of the magnetic skyrmion is imaged by NV center. The magnetization distribution is reconstructed from stray field imaging. With the topological number limited to one, the Nel type magnetization is uniquely determined. These results show that the magnetic imaging method has great advantages to resolve the emerging magnetic structure materials. The magnetic imaging technology based on the NV center will potentially become an important method to study magnetic materials under continuous development.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3