Spontaneous generation of spiral wave in the array of Hindmarsh-Rose neurons

Author:

Wang Peng ,Li Qian-Yun ,Tang Guo-Ning ,

Abstract

Spiral waves have been reported to be existent in the neocortex, during pharmacologically induced oscillations and sleep-like states. In the last decades, theoretical studies have demonstrated an underlying mechanism of the generation of spiral waves in a heart system. Nevertheless, how can a neural system produce spontaneous spiral wave and whether this behavior is sensitive to the dynamics of isolated neurons have not been systematically studied yet. In this paper we propose a modified Hindmarsh-Rose (HR) neuron model to study whether spiral wave can occur spontaneously in a two-dimensional array of HR neurons, which evolves from the initial state with a random phase distribution. The simulation results show that whether spiral wave can occur spontaneously in the system depends on the state of the single HR neuron, initial state of system and coupling strength. Especially, the state of the single HR neuron plays a central role. When the single HR neuron is in the state of period 1 spike, multiple spiral waves and spiral pairs can be generated spontaneously in the system for a certain range of coupling strength. In this case, the formations of spiral waves are completely independent of the initial state of the system, and as long as choosing an appropriate coupling strength, a single spiral wave can be found in the system. Furthermore, when the coupling strength exceeds a certain threshold value, the system will exhibit three kinds of dynamical behaviors, and correspond to three kinds of the different initial states, respectively. When system evolves from the first kind of initial state, the single spiral wave can be found occasionally in the system. When the system evolves from the second or third kind of initial state, the oscillation with intermittently global synchronization and oscillation death can be observed in the system, respectively. When a single HR neuron is in the state of period 2 spike, the spiral wave can appear spontaneously in the system only when the phase distribution of the initial state approaches to a uniform distribution. Moreover, the range of coupling strength on the generation of spiral wave is smaller than that of period 1 spike. When the single HR neuron is in a higher periodic state, it is difficult to generate spontaneously spiral wave in the system. These results are useful in understanding the spontaneous generation of spiral waves in the neocortex.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3