Analysis of magnetohydrodynamic drag character for hypersonic vehicles

Author:

Yao Xiao ,Liu Wei-Qiang ,Tan Jian-Guo ,

Abstract

In hypersonic flight, a very high temperature area can form ahead of the nose of aerocraft due to the shock aerodynamic heating, which leads to air weakly ionized. Many researchers have demonstrated that it is effective to control flow by utilizing the interaction between weakly ionized air and a magnetic field. Most of previous researches focus on magnetohydrodynamic (MHD) heat shield, because the Lorentz force can increase the shock stand-off distance, further reduce convective heat flux. In this study, the MHD force effect is mainly considered, and the MHD drag characters under different types of magnetic field are discussed.The numerical simulation of hypersonic hemispherical flow field with external magnetic field is carried out by using a low magnetic-Reynolds MHD model. Three kinds of simple ideal magnetic fields (axial, radial and circle uniformly distributed magnetic field) are compared and analyzed. The influence and mechanism of the structure of the flow field, the aerodynamic drag and the Lorentz resistance of different magnetic fields are analyzed. It is found that under the radial ‘extrusion’ effect of the axial magnetic field, the shock wave shape is protruded and a ‘saturation phenomenon’ of pressure exists on the wall; the radial magnetic field has the axial ‘extrusion’ effect, the larger magnetic field intensity will lead to the formation of the high temperature area of the shoulder, and the induced electric field in the circle magnetic field leads to the poor effect of increasing resistance. Then the flow fields of two special magnetic fields (dipole magnetic field and solenoid magnetic field) are compared, and the radial ‘dilatation’ effect is found to be different from the ideal magnetic field. Compared with the Lorentz force under the different magnetic fields, the Lorentz force in the radial magnetic field is found to be concentrated in the high temperature area of the shoulder, and the Lorentz force is generally small under the circle magnetic field. The direction near the standing point will have an adverse effect, i.e., the resistance increases. In the specially distributed magnetic field, the direction of Lorentz force near the shoulder is approximately parallel to that of the shoulder, while the direction near the standing point is approximately perpendicular to the axis. Compared with the dipole magnetic field, the solenoid magnetic field with high Lorentz force region is close to the shoulder, so it will have good resistance enhancement effect. The influence of the dipole magnetic field on the wall pressure is weak. The effect of increasing resistance, caused by the magnetic field induced electric field, evolves from weak to strong in the following sequence:radial magnetic field, solenoid magnetic field, axial magnetic field, dipole magnetic field and circle magnetic field.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Li G J, Zhang W R, Yin Y S, Cheng Z Q 2004 Ceramics 2 28 (in Chinese)[李贵佳, 张伟儒, 尹衍升, 程之强 2004 陶瓷 2 28]

2. Lu H B, Liu W Q 2012 Acta Phys. Sin. 61 064703 (in Chinese)[陆海波, 刘伟强 2012 物理学报 61 064703]

3. Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 2013101122957[2015-04-15] (in Chinese)[刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利 ZL 2013101122957]

4. Yang X W, Liao Y B, Zhang D Y 2007 J. Exper. Fluid Mech. 21 49 (in Chinese)[杨贤文, 廖翼兵, 张德宇 2007 实验流体力学 21 49]

5. Zhao Z H 1995 Spacecraft Recovery 16 13 (in Chinese)[赵祖虎 1995 航天返回与遥感 16 13]

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3