Author:
Lu Hai-Bo ,Liu Wei-Qiang ,
Abstract
The cooling efficiency of a forward-facing cavity and opposing jet combinatorial thermal protection system is investigated, by which the flow field parameters, the aerodynamic force, and the surface heat flux distribution are obtained. The numerical simulation method is validated by experiment with no opposing jet model. The analysis of the numerical simulation results shows that this kind of combinatorial thermal protection system has an excellent effect on cooling the outer body surface of the nose-tip. By introducing an opposing jet with a small total pressure (total pressure ratio PR is 0.1), the cooling effect of combinatorial configuration can be much better than that of a single cavity. With the opposing jet speed increasing, the cooling efficiency is improved and the aerodynamic resistance is reduced. The combinatorial system is suited for the thermal protection of hypersonic aircraft that needs a long-distance and long-time flight.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献