Measurement of bulk viscosity of nitrogen based on spontaneous Rayleigh-Brillouin scattering

Author:

Wu Tao ,Shang Jing-Cheng ,He Xing-Dao ,Yang Chuan-Yin ,

Abstract

Bulk viscosity is an important parameter to understand gas viscosity in micro perspective. The traditional ultrasound absorbtion method with acoustic frequencies in a megahertz range cannot be directly applied to high frequencies field, where acoustic waves are in the gigahertz domain. However, gas bulk viscosity at high frequency can be measured by spontaneous Rayleigh-Brillouin scattering (SRBS) and coherent Rayleigh-Brillouin scattering (CRBS). Recent researches show that the bulk viscosity of nitrogen measured by CRBS at a wavelength of 532 nm is obviously different from the values from SRBS in the near-ultraviolet region. In order to obtain accurate bulk viscosity of nitrogen at the wavelength of 532 nm, the SRBS spectra of nitrogen excited by a 532 nm laser are measured in a pressure range from 1 bar to 9 bar at the constant room temperature. The measured SRBS spectrum at the pressure of 7 bar is compared with the theoretical spectrum to obtain optimal scattering angle by using the principle of minimum value of χ2. The theoretical spectrum is calculated by convolving the Tenti S6 model with the instrument transmission function of measurement system. Given that the effect of pressure on the bulk viscosity is negligible, the bulk viscosity value (1.46±0.14)×10-5 kg·m-1-1 of nitrogen at a temperature of 299 K is acquired by averaging the values of bulk viscosity under different pressures (4-9 bar), each value is obtained by comparing the measured spectra at different pressures with the theoretical spectra by using the optimal scattering angle and the principle of minimum value of χ2. The values of bulk viscosity of nitrogen over the pressure of 1-3 bar are not considered because of its big deviation compared with the values under higher pressures (4-9 bar). The results show that the average value of bulk viscosity obtained in our experiment is close to that from the theoretical calculation and SRBS experiments reported in the literature but different obviously from the bulk viscosity obtained by CRBS. In order to testify the bulk viscosity of nitrogen measured in our experiment, it is used to retrieve temperature of nitrogen under pressure ranging from 1 bar to 9 bar. The results show that the absolute error between the retrieved temperature and the reference temperature under different pressures are all below 2.50 K and the difference between the average temperature and the reference temperature is less than 0.15 K. This demonstrates that the measured bulk viscosity of nitrogen in our experiment is accurate and reliable for the gas parameters retrieved by SRBS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3