Theoretical analyses of gaseous spontaneous Rayleigh-Brillouin scattering and pressure retrieving

Author:

Shang Jing-Cheng ,Wu Tao ,He Xing-Dao ,Yang Chuan-Yin ,

Abstract

The gas pressure is an important parameter describing the status of system and relating to many properties of physics and chemistry. The traditional intrusive method for pressure measurement has some effects on the gas status and the measurement accuracy. Therefore, it is desired to develop a non-intrusive method. The spontaneous Rayleigh-Brillouin scattering (SRBS) is a potential tool for accurate, remote, and non-intrusive pressure measurement. In this paper, the SRBS spectra are simulated using the Tenti S6 model convolved with the instrument function of the measurement system at a 90 scattering angle and pressures of 2, 4, and 6 atm (1 atm = 1.01325105 Pa). In order to eliminate the effect of the instrument function of the measurement system, we propose a deconvolution method by comparing the traditional convolved SRBS method in this paper. According to the principle of the Wiener filter and the truncated singular value decomposition method, the Wiener filtering factor can be obtained. And the deconvolved spectra are obtained by convolving the stimulated spectra with the Wiener filtering factor. We find that the deconvolved spectra are coincident well with those from the Tenti S6 model without convolving with system transmission function. In order to compare the accuracy of the convolution method with that of the deconvolution method in experiment, the SRBS spectra of N2 mixed with aerosols are measured at a 90 scattering angle and pressures of 2, 4, and 6 atm respectively. The experimentally obtained raw spectra are fitted with the theoretical spectra, which are obtained by convolving the Tenti S6 model with the instrument function of the measurement system. The relative errors of retrieved pressure are all less than 6.0%, and the normalized root-mean-square deviation is calculated and found to be less than 6.5%. On the other hand, the deconvolved spectra are obtained by convolving the experimentally obtained raw spectra with the Wiener filtering factor and then fitted with theoretical calculated spectra from Tenti S6 model without convolving with system transmission function. The relative errors of retrieved pressure are all less than 5.0%, and the normalized root-mean-square error is less than 6.0%. By comparing the two methods, it can be found that the deconvolution method can eliminate the effect of instrument function of the measurement system and improve the resolution of Rayleigh-Brillouin scattering spectrum. The performance of fitting and the accuracy of pressure retrieving show that the deconvolution method is better than the convolution method under lower pressure (2 atm), but worse than the convolution method under higher pressure (2 atm). The comparison result demonstrates that the deconvolution based on the Wiener filter is likely to be directly applied to the exploring of the properties of the combustor in aero engine, such as pressure profile retrieval or temperature measurements.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Boley C D, Desai R C, Tenti G 1972 Can. J. Phys. 50 2158

2. Ma Y, Liang K, Lin H, Ji H 2007 Acta Opt. Sin. 27 962 (in Chinese) [马泳, 梁琨, 林宏, 冀航 2007 光学学报 27 962]

3. Gu Z, Ubachs W, Marques Jr W, van de Water W 2015 Phys. Rev. Lett. 114 243902

4. Cao C L, Xu S L, Liu E W 2013 J. Univ. Sci. Tech. China 43 510 (in Chinese) [曹春丽, 徐胜利, 刘二伟 2013 中国科学技术大学学报 43 510]

5. Gu Z Y, Ubachs W, van de Water W 2014 Opt. Lett. 39 3301

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3