Properties of band gaps in phononic crystal pipe consisting of expansion chambers with extended inlet/outlet

Author:

Zhang Zhen-Fang ,Yu Dian-Long ,Liu Jiang-Wei ,Wen Ji-Hong ,

Abstract

Noise reduction is an interesting and important subject in the piping systems of many applications, in order to suppress noise in the pipe, many significative researches have been done. In recent years, the acoustic wave propagation in the phononic crystal pipe has received increasing attention. The characteristic band gaps in phononic crystal pipe can forbid wave to propagate within the band-gap frequency range, which provides a new way to control the noise in piping system. In this paper, the acoustic properties of phononic crystal pipe consisting of expansion chambers with the extended inlet/outlet are investigated theoretically and numerically. By combining the two-dimensional mode matching method and the transfer matrix method, the band structure and transmission loss, especially the band-gap properties of the phononic crystal structure are presented. The obtained results exhibit excellent agreement with the results from the finite element method. Then, this theoretical method is compared with the one-dimensional plane wave method, and it is found that the results from the proposed method are more accurate within the studied frequency range. Further, the effect of modal order in the band-gap frequency range is analyzed, which shows that the mode matching method has a good convergence.The wave scattering and resonance of the chamber will induce the Bragg and locally-resonant band gaps in the periodic pipe, respectively. Further analysis on the transmission coefficient in a band gap is conducted. It shows that the transmission coefficient decays exponentially with the periodic number increasing, which demonstrates that the suppression of the wave propagation in phononic crystal pipe is caused by the band-gap rather than the impedance mismatch. Then the effects of variable parameters including the lattice constant and the length of the insertion on the location and width of the band gaps are investigated. The results show that the lattice constant mainly controls the Bragg band gaps and the length of the insertion exerts a significant influence on the locally-resonant band gaps. Finally, the coupling behaviors of band gaps are studied to expand their widths. It is found that the Bragg band gaps can be coupled with the locally-resonant band gaps via changing the lattice constant and the length of the insertion, which can give rise to wider band gaps. Furthermore, the coupling between two locally-resonant band gaps is proposed by changing the length of the insertion, which also produces wider band gaps.This study can provide new ideas for designing the phononic crystal pipe to suppress the noise in piping system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

1. Liang X D 2010 NVC 30 127 (in Chinese) [梁向东 2010 噪声与振动控制 30 127]

2. Shen H J, Li Y F, Su Y S, Zhang L K, Song Y B 2017 J. Vib. Shock 36 163 (in Chinese) [沈惠杰, 李雁飞, 苏永生, 章林柯, 宋玉宝 2017 振动与冲击 36 163]

3. Coulon J M, Atalla N, Desrocher A 2016 Appl. Acoust 113 109

4. Xiang L Y, Zuo S G, Wu X D, Zhang J, Liu J F 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

5. Fang Z, Ji Z L, Liu C Y 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3