Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials

Author:

He Zi-Hou,Zhao Jing-Bo,Yao Hong,Jiang Juan-Na,Chen Xin, ,

Abstract

Aiming at the isolation of low-frequency sound, a kind of thin-film acoustic metamaterialis designed and obtained by implanting PZT into thin film. The finite element method (FEM) of the structure is built, and 1<sup>st</sup>–14<sup>th</sup> order eigenfrequencies and transmission loss between 20–1200 Hz are calculated. The reliability of finite element calculation is verified experimentally and the existence of adjustable sound insulation peak is monitored in the experiment. The results show that the acoustic metamaterial has good sound insulation performance in a frequency range between 20 and 1200 Hz, and has two sound insulation peaks of more than 50 dB, and there is a sound insulation peak which can be changed by adjusting the parameters of the outer circuit. By analyzing the first resonance mode of simple structure and building its equivalent model, the effect of structural parameter on the sound insulation performance of thin film acoustic metamaterial is investigated theoretically, and the rationality of the equivalent model is verified by the finite element calculation. The sound insulation mechanism of the structure is further illustrated by taking into consideration the eigenfrequencies, transmission loss curve and vibration mode diagrams at various frequencies. It is found that at the resonance frequency, the flapping motion of the film will cause the sound wave in the subsequent propagation to cancell the interference, therefore realizing the attenuation of the sound wave. Based on Fano resonance theory, the reasons for the different characteristics of transmission loss curves at different resonance points are investigated. The PZT and outer circuit can form a LC oscillator. At the resonant frequency of the oscillator, the vibration of the piezoelectric material can absorb the energy of sound wave to cause a sound insolation peak. The resonant frequency of the circuit can be adjusted by changing the parameters of the outer circuit, thereby realizing the adjustability of the sound insulation performance. The influence of eccentricity of piezoelectric mass block on sound insulation performance of material is explored, proving that the sound insulation performance can be further optimized by improving structure. And through the finite element calculation, it is proved that the sound insulation performance of material is adjustable by changing the parameters of the outer circuit. The results provide a theoretical reference for designing the thin film acoustic metamaterials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Deng J H, Wang K, Chen G P 2008 Acta Aeronaut. Astronaut. Sin. 29 1581
邓吉宏, 王柯, 陈国平 2008 航空学报 29 1581

2. Bolton J S, Shiau N M, Kang Y 1996 JSV 191 317

3. Liu Z, Zhang X X, Chan C T, Sheng P 2000 Science 289 1734

4. Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302
张思文, 吴九汇 2013 物理学报 62 134302

5. Zhang S, Guo S X, Yao H, Zhao J B, Jiang J N, He Z H 2018 Piezoelectr. Acoustoopt. 40 754
张帅, 郭书祥, 姚宏, 赵静波, 蒋娟娜, 贺子厚 2018 压电与声光 40 754

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3