Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique

Author:

Jia Meng-Yuan ,Zhao Gang ,Zhou Yue-Ting ,Liu Jian-Xin ,Guo Song-Jie ,Wu Yong-Qian ,Ma Wei-Guang ,Zhang Lei ,Dong Lei ,Yin Wang-Bao ,Xiao Lian-Tuan ,Jia Suo-Tang , , ,

Abstract

Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful tool for trace gas detection, which is based on the combination of frequency modulation spectroscopy (FMS) for reduction of 1/f noise, especially residual intensity noise, and cavity enhanced absorption spectroscopy (CEAS) for prolonging the interaction length between the laser and the targeted gas. Because of the locking of modulation frequency in FMS to the free spectral range (FSR) of the cavity, NICE-OHMS is immune to the frequency-to-amplitude noise, which is a main limitation to CEAS. Moreover, due to the building of high power inside the cavity, NICE-OHMS can easily saturate the molecular absorption thus obtain sub-Doppler spectroscopy, which possess a high resolution and odd symmetry, and thus can act as a frequency discriminator for the locking of the laser frequency to the transition center. In this paper, a fiber laser based NICE-OHMS system is established and the laser frequency is locked to the sub-Doppler absorption line of NH3 by sub-Doppler NICE-OHMS. To avoid the complex design of high-Q-factor bandpass filter at radio frequency, the frequency νpdh, used for Pound-Drever-Hall (PDH) locking, is generated by the beat frequencies νfsr and νdvb, which are used for NICE-OHMS signal and DeVoe-Brewer (DVB) locking, respectively. The performances of PDH and DVB locking are analysed by the frequency distribution deduced from the error signals, which result in frequency deviations of 4.3 kHz and 0.38 kHz, respectively. Then, the CEAS signal and NICE-OHMS signal in the dispersive phase for the measurement of NH3 at 1.53 μm under 70 mTorr are obtained, which show signal-to-noise ratios of 3.3 dB and 45.5 dB, respectively. Due to the high power built in the cavity, the sub-Doppler structure in the NICE-OHMS signal is obtained in the center of the absorption tansition with a satruation degree of 0.22, which is evaluated by the amplitude ratio between sub-Doppler and Doppler-broadened signals. The linewidth (full width at half maximum) of the sub-Doppler signal of 2.05 MHz is obtained, which is calibrated by the time interval between carrier and sideband. The free-running drift of the laser frequency is estimated by the NICE-OHMS signal and results in 50 MHz over 3 h. While, with locking, the relative deviation of the laser frequency is reduced to 16.3 kHz. In order to evaluate the long term stability of the system, the frequency deviation over 3 h is measured. The Allen deviation analysis shows that the white noise is the main noise of the system in the integration time shorter than 10 s. And the frequency stability can reach to 1.6×10-12 in an integration time of 136 s.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3