Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble

Author:

Wen Ya-Fei,Tian Jian-Feng,Wang Zhi-Qiang,Zhuang Yuan-Yuan, ,

Abstract

Entanglement between a photon and an atomic memory is an important tool for quantum repeater research. By using the Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble, quantum entanglement between a photon and an atomic spin-wave memory is produced. With the further development of quantum information, it is necessary to put forward higher requirements for the diversity and controllability of quantum memory. In this work, we experimentally demonstrate an optical memory in cold atomic ensemble with enhanced fiber-cavity and high-fidelity optical memory for the first time. We design a fiber cavity to enhance the coupling strength between light and atomic ensemble and then improve the optical retrieval efficiency. Unfortunately, the use of fiber cavity may lead to the decrease of fidelity. Therefore, it is vital to realize high fidelity in the enhanced fiber-cavity optical memory. The cavity has a round-trip length of 1.5 m and a free spectral range of 190 MHz. The finesse (<i>F</i>) of the cavity with the cold atoms in the DLCZ condition is measured to be <inline-formula><tex-math id="Z-20230319104926-1">\begin{document}$ \sim $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-1.png"/></alternatives></inline-formula>18. In cavity-enhanced DLCZ scheme, we use a fiber cavity instead of a stationary cavity. If a stationary cavity is used, the signal light will be reflected by the end mirror of the cavity and then pass back through the atoms. The storage of the backward signal light will generate a short-wavelength spin wave and then lead to a rapid decoherence of the memory. When cavity is locked by using the PDH frequency locking technique, we observe that the production probability of the Stokes photons is increased by 4.6 times higher than that without cavity and retrieval efficiency of atomic spin wave is increased by 1.6 times that without cavity due to the optical cavity enhancement effect. The presented cavity-enhanced storage shows that the retrieval efficiency is <inline-formula><tex-math id="Z-20230319104926-3">\begin{document}$ \sim $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-3.png"/></alternatives></inline-formula>22%, corresponding to an intrinsic retrieval efficiency of <inline-formula><tex-math id="Z-20230319104926-2">\begin{document}$ \sim $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-2.png"/></alternatives></inline-formula>40%, at the same time the fidelity of the quantum state is <inline-formula><tex-math id="Z-20230319104926-4">\begin{document}$ \sim $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222178_Z-20230319104926-4.png"/></alternatives></inline-formula>92%. The accomplishment of this project will provide another effective way of realizing long-distance quantum communication and large-scale quantum network construction.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3