Analysis of characteristics of spatters during high-power disk laser welding

Author:

Gao Xiang-Dong ,Long Guan-Fu ,Wang Run-Lin ,Katayama Seiji , ,

Abstract

Real-time monitoring and control of welding process is important for laser welding quality. Therefore, the variation rule of sensing characteristics of welding process and their relations to weld quality should be known. Spatter is one of the most important phenomena in high-power laser welding process. The characteristics of spatters are related to the quality and stability of welding and the utilization of the laser power. An approach to analyze the characteristics of spatters is investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed video camera is used to capture the dynamic images of the laser welding spatters. The number, area, and ejecting distance of spatters and the centroid height of spatter images are calculated as the characteristic parameters of spatters by using the image processing technology. The weld bead width is considered as a parameter reflecting the quality and stability of welding process. The linear and the higher order polynomial curve fitting for the data of the characteristic parameters are used to study the variation rule of the characteristic parameters of spatters. In comparison of the fluctuation of the weld bead width, the correlation between the spatter characteristics and the quality and stability of welding is studied. The experimental results of actual laser welding show that the quality and stability of a high-power disk laser welding of Type 304 austenitic stainless steel plates could be monitored and estimated by analyzing the characteristic parameters of spatters, which is the foundation for monitoring and control of welding quality in real time.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3