Effect of laser-induced zinc micro-spheres on enhanced absorption of subsequent pulse laser

Author:

Chen Ming ,Li Shuang ,Cui Qing-Qiang ,Liu Xiang-Dong , , ,

Abstract

Numerous football-shaped Zinc micro-spheres on inner surface of the crater are produced by pulsed laser ablation of Zn metals in vacuum condition (~2 Pa). Pulsed laser induced plasma emission spectrum is measured to reveal the effects of macro- and micro-structures on subsequent pulse laser ablation. The intensity of spectral line at 334.5 nm originating from Zn atoms by subsequent laser ablation of the ablated spot is 10.3% higher than that created over a smooth surface. The intensity of the same spectral line produced over a ablated spot with a great number of micro-spheres is 1.343 times higher than that produced by the plasma generated over the ablated spot. The Zn micro-sphere completely covered with nano-scaled regular pentagonal and hexagonal facets can lead to an enhanced absorption of the following laser energy. The total number of Zn micro-spheres increases as the number of laser shots increses, which can result in hotter and dense plasma by subsequent laser ablation. The proposed results are of importance for developing the laser micro-drilling technique.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3