Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation

Author:

Zhu Yong ,Li Bao-Hua ,Xie Guo-Feng ,

Abstract

BaTiO3 is a kind of perovskite ferroelectric which has the advantages of ferroelectric property, piezoelectric property and radiation resistance. BaTiO3 thin films and devices have important applications in strong irradiation environment. The structure damage, especially the oxygen vacancy has a crucial influence on the response of ferroelectric under radiation. Molecular dynamics is used to simulate the formation process and the recovery process of defects in BaTiO3 under the impact of primary knock-on atom (PKA). The results show that the initial motion direction and energy of PKA have significant effects on the number of defects, and the averaged threshold displacement energies of Ba, O and Ti atom are 69 eV, 51 eV and 123 eV respectively. The calculated displacement energy is obviously larger than default value (25 eV) in SRIM code. Furthermore the SRIM code is used to simulate the proton irradiation damage in BaTiO3 thin film. The results show that the number of vacancy increases with the increase of proton energy, but the increase rate decreases, and the number of vacancy decreases obviously with the increase of incidence angle when it is more than 60°.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3