Molecular dynamics study of epitaxial compressive strain influence on the radiation resistance of BaTiO3 ferroelectrics

Author:

Wang Yu-Zhen ,Ma Ying ,Zhou Yi-Chun , ,

Abstract

Radiation displacement effect of BaTiO3 ferroelectric under epitaxial compressive strain is studied by using molecular dynamics simulations which is based on shell model. The numbers of defects, distributions and changes of polarization in the system are calculated before and after radiation under epitaxial compressive strains of 0, 0.4%, 0.8%, 1.2%, 1.6%, 2.0% respectively by using O atom of 1 keV and [001] direction as a primary konck-on atom (PKA). The damaged areas, the displacement distances of the defect, and migration distances of PKA under reverse applied electric field, obtained in the two cases: 2% compressive strain and no strain, are compared. The results show that the polarization of system increases almost linearly with increasing the epitaxial compressive strain, and that both the polarization amplitude and the number of defects decrease after irradiation. The displacement distance of defects under 2% compressive strain, migration distance of PKA under reverse applied electrical field and damaged area are all smaller than under no strain condition, which indicates that epitaxial compressive strain can suppress lattice irradiation damage, and the damage in BaTiO3 can be tuned by introducing epitaxial compressive strain.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3