Effect of doping on evolution of He<sup>+ </sup>ion irradiation defects and superconductivity in EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7–δ</sub> superconducting strips

Author:

Zhao Po,Wang Jian-Qiang,Chen Mei-Qing,Yang Jin-Xue,Su Zheng-Xiong,Lu Chen-Yang,Liu Hua-Jun,Hong Zhi-Yong,Gao Rui, , , ,

Abstract

Rare-earth barium copper oxide (REBCO) as a representative of the second-generation high-temperature superconducting materials possesses superior physical advantages such as high critical magnetic field, elevated critical temperature, and superior current density, which has been applied to many domains. Although the introduction of non-superconducting nanoscale particle dopants, as a critical method, can enhance the magnetic flux pinning capability of REBCO strips, the effect of the doping on the performance change and microstructure evolution of the strips under irradiation is ignored. In this work, undoped and 3.5% BaHfO<sub>3</sub> (BHO) doped EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7–δ</sub> strips are investigated in the room-temperature irradiation experiments (1.4 MeV He<sup>+</sup> ions) with three distinct doses of 5×10<sup>14</sup>, 5×10<sup>15</sup>, and 5×10<sup>16</sup> ions/cm<sup>2</sup>, respectively. Electrical performance tests reveal that the undoped strips exhibit a slight increase in <i>J</i><sub>c</sub> after the low-dose irradiation. However, with dose increasing, <i>J</i><sub>c</sub> decreases by over 60%. In contrast, doped strips experience a significantly smaller decline in <i>J</i><sub>c</sub>, ranging only between 30% and 40% at high-dose irradiation. Raman spectroscopy and transmission electron microscopy characterizations confirm that the defects induced by He<sup>+</sup> ion irradiation lead to amorphization and structural disorder within the superconducting layers, which is the primary reason for the decline in the superconducting properties of the strips. The results show that the introduction of localized strain through BHO nanophase in the superconducting layer changes the migration and aggregation behavior of irradiation-induced defects, repairing the damaged superconductor structure. Furthermore, the field dependence and temperature dependence of <i>J</i><sub>c</sub> of doped strips are irradiation-resistant due to BHO nanocrystals as strong pinning centers. Additionally, unlike the superconducting properties of the REBCO strips that can be repaired through oxygen annealing after neutron or heavy ion irradiation, the electrical properties of the two types of strips irradiated with high doses of He<sup>+</sup> ions in this work are further deteriorated after being annealed. It is worth noting that compared with the undoped strip, the localized strain generated by BHO in the doped strip inhibits the size growth of helium defects in the three-dimensional direction at high temperatures, which changes the magnetic flux pinning characteristics and delays the disorder and amorphization of the superconducting layer structure caused by the severe growth of helium bubbles. This study provides a reference for the application of REBCO superconducting strips in the irradiation environment.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3