The influence of channel size on total dose irradiation and hot-carrier effects of sub-micro NMOSFET

Author:

Cui Jiang-Wei ,Yu Xue-Feng ,Ren Di-Yuan ,Lu Jian , , ,

Abstract

Total dose irradiation and the hot-carrier damages are two of the important factors for the application of sub-micro and even smaller MOS devices. Therefore, how to prevent the device from being damaged attracts much attention. Total dose irradiation and hot-carrier effects of sub-micro NMOSFET with various channel sizes are studied. Electronic parameters are measured and the results show that though the principles of damages are somewhat similar, the total dose irradiation and the damage behavior and their dependences on the width-to-length(W/L) ratio of channel size for these two effects are different. The most notable damage of radiation lies in the great increase of the off-state leakage current, and the damage increases withW/L reducing. While for hot-carrier effect, several parameters such as trans-conductance change a lot, except for the off-state leakage current. And the damage increases as channel length and channel width decrease. The different damage behaviors and different relations to channel size are attributed to the different location of charges induced. Therefore, different aspects should be considered when the device is hardened against these two effects.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Jeremy D. Popp 2010 IEEE Nuclear and Space Radiation Effects Conference Short Course Notebook Denver, CO, July19, 2010, II-4

2. Federico Faccio, Giovanni Cervelli 2005 IEEE Trans. Nucl. Sci. 52 2413

3. Kong Xuedong, Huang Yun, Yang Shaohua 2009 IEEE Proceedings of 16th IPFA Suzhou 6—10 July 2009 1—6

4. Li Zhong-He, Liu Hong-Xia, Hao Yue 2006 Acta Phys. Sin. 55 820(in Chinese)[李忠贺, 刘红侠, 郝跃 2006 物理学报 55 820]

5. Liu H X, Fang J P, Hao Y 2001 Acta Phys. Sin. 50 1172(in Chinese)[刘红侠, 方建平, 郝跃 2001 物理学报 50 1172]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3