STM study of growth of manganese silicide thin films on a Si(100)-21 surface

Author:

Li Wei-Cong ,Zou Zhi-Qiang ,Wang Dan ,Shi Gao-Ming , ,

Abstract

Manganese silicides are promising candidates for microelectronics and spintronics materials. A good understanding of their growth mechanisms is a crucial step toward their practical applications. In this paper, a Mn film of ~4 monolayer is deposited on a Si(100)-21 surface by molecular beam epitaxy. The solid reaction between the Mn film and the silicon substrate in a temperature range of 250750℃ is studied using scanning tunneling microscopy. At room temperature, the as-deposited Mn atoms do not react with the silicon atoms and the film consists of disordered Mn clusters. When the sample is annealed at a higher temperature than 290℃, the Mn begins to react with the Si and forms small three-dimensional (3D) islands of Mn-rich silicides and silicide islands of dendritic shapes. When the annealing temperature reaches 325℃, small tabular islands, which correspond to MnSi, start to grow on the Si substrate. At an annealing temperature of 525℃, silicide islands with dendritic shapes all disappear; meantime several large tabular islands, which correspond to MnSi1.7, are formed. When the annealing temperature is higher than 600℃, 3D islands and small tabular islands all disappear while large tabular islands remain there. These results demonstrate that the morphology and the structure of the film strongly depend on annealing temperature. The average size (area) of the remaining islands increases with the increase of annealing time. Time dependence of the averaged island area indicates that the growth of the islands follows the diffusion limited Ostwald ripening mechanism.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3