Shock response and evolution mechanism of brittle material containing micro-voids

Author:

Yu Yin ,He Hong-Liang ,Wang Wen-Qiang ,Lu Tie-Cheng , ,

Abstract

Micro-voids significantly affect shock responses of brittle materials. Knowledge about the meso-scale evolution mechanism and macro-scale shock behavior will help to utilize micro-void in applications and avoid its disadvantages. A lattice-spring model, which can represent both elastic property and fracture evolution accurately, is built in this work. Simulations reveal that severe stress relaxation, which is contributed from collapse deformation induced by voids and slippage deformation induced by shear cracks extending from voids, modulates the propagation of shock wave. In a porous brittle material, the shock wave broadens into an elastic wave and a deformation wave. On a macro-scale, the deformation wave behaves as a plastic wave in ductile metal; on a meso-scale, it corresponds to the processes of collapse and slippage deformations. It is found that porosity of the sample determines the Hugoniot elastic limit of material; whereas the porosity and shock stress affect the propagation speed of the deformation wave and stress amplitude in a final state of shock. Brittle materials containing micro-voids have potential applications in complex shock loading experiments, precaution of shock induced function failure, and crashworthiness of buildings. Shock behaviors reported in this work will benefit the design and optimization of shock responses and dynamic mechanical properties of brittle materials used in specific applications.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3