Shock plasticity design of brittle material

Author:

Jiang Tai-Long ,Yu Yin ,Huan Qiang ,Li Yong-Qiang ,He Hong-Liang , ,

Abstract

The mechanical properties of a material are closely related to its internal micro-structure. Enhancing shock plasticity by designing appropriate micro-structure will help to slow down or delay shock failure of brittle material. In this paper, we put forward a method of designing and improving shock plasticity of brittle material by implanting specific micro-voids. A lattice-spring model is adopted, which can represent mechanical properties of brittle materials quantitatively. Simulations reveal how the arrangement modes of micro-voids can affect the shock response of brittle material. By implanting randomly arranged voids, porous brittle material has significantly higher shock plasticity than dense brittle material and the design of the regular arrangement mode of voids will help to enhance the shock plasticity further. The dominant mechanism corresponding to the void collapse in the shocked brittle material is shear slip caused by shear stress concentration, which features the occurrence of shear cracks around the voids. Features of mesoscopic deformation in the sample with 5% porosity indicate that the shock plasticity of porous brittle material comes from the volume shrinkage deformation caused by void collapse and the slippage and rotation deformation caused by extension of shear cracks. The inter-permeation of voids and volume shrinkage deformation play a leading role in the sample with regularly arranged voids. While the shear cracks extends over long distance, slippage and rotation deformation take place dominantly in the sample with randomly arranged voids. The two samples with different arrangement modes of voids both have three stages of response in the Hugoniot stress-strain curves in this paper, i. e., linear elasticity stage, collapse deformation stage, and slippage and rotation deformation stage. The sample with higher porosity has a higher shock plasticity than the sample with lower porosity. When the samples have the same porosity, the collapse deformation stage makes greater contribution to the overall shock plasticity if voids are regularly arranged, while the slippage and rotation deformation stage make greater contribution to the overall shock plasticity if the voids are randomly arranged. The principle of enhancing shock plasticity of brittle material by arranging voids regularly in this paper provides physical knowledge for the designing and preparing new types of brittle materials, thereby helping to prevent the function failure induced by shock in brittle material.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3