Author:
Zhang Ming-Liang ,Cai Li ,Yang Xiao-Kuo ,Qin Tao ,Liu Xiao-Qiang ,Feng Chao-Wen ,Wang Sen ,
Abstract
Nanomagnetic logic has the advantages in low power, non-volatility, and room temperature operation, however, low power on-chip clocking is the requirement of its integration. An on-chip clocking structure for a nanomagnetic logic circuit using exchange interaction is proposed in this work. This scheme is to use the Oersted field generated by current-carrying copper wire to magnetize ferromagnetic film cladding and then to switch the magnetization orientation of nanomagnets by the exchange interaction between magnetic layers. Simulation results demonstrate that the proposed scheme can reduce the power dissipation by 5/6 and the marginal spray field by 2/3 compared with the ferromagnetic yoked clocking that uses the external field to switch the magnetization. Therefore, it can reduce the power consumption and the risk of crosstalk. In addition, micromagnetic simulation verifies that nanomagnetic array laid on the proposed clocking can work functionally.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献