Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure

Author:

Xiao Hong-Yu ,Li Shang-Sheng ,Qin Yu-Kun ,Liang Zhong-Zhu ,Zhang Yong-Sheng ,Zhang Dong-Mei ,Zhang Yi-Shun , , ,

Abstract

In this paper, by choosing catalyst of FeNiMnCo alloy, boron-doped diamond single crystals are synthesized under 5.1–5.6 GPa and 1230–1600℃; the temperature field is studied by finite element method (FEM). First, the P-T phase diagram for diamond single crystal growth, in the synthesis system of FeNiMnCo-C-B, is obtained, and the lowest synthesis conditions of 5.1 GPa and 1230℃ is found in the studies. By simulation with FEM, it is found that the content of boron element should be less and less in the growth of diamond single crystal in the {111} sector, and the reason is that the growth speed is reduced in the sectors. By growing diamond crystals with {111} faces, it is also found that the content of boron element in {111} secondary sector is greater than that in {111} primary sector, which is duo to the rapid growth of {111} secondary sector. Compared with the synthesis of diamond single crystal by film growth method, the diamond crystals thus obtained has no pits, the doping content of boron can be greater, and the diamond can be synthesized by temperature gradient method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3