Research progress of large diamond single crystals under high pressure and high temperature

Author:

You Yue,Li Shang-Sheng,Su Tai-Chao,Hu Mei-Hua,Hu Qiang,Wang Jun-Zhuo,Gao Guang-Jin,Guo Ming-Ming,Nie Yuan, ,

Abstract

Diamond has a series of extreme characteristics superior to other materials, and also very wide application scope. The large diamond single crystal can play a role in its functional characteristics, which has become a research hotspot. In this paper, we introduce the principle and process of synthesizing large diamond single crystal by temperature gradient method (TGM) under high pressure and high temperature (HPHT), and summarizes the research status and research directions of different types of and additives-doped large diamond single crystals respectively. The principle of the temperature gradient method is that the carbon source, driven by the temperature gradient, diffuses from the high concentration region at the high temperature end to the low concentration region at the low temperature end, and diamonds are grown on the seed crystal. The growth rate of diamond crystal is controlled by adjusting the axial temperature gradient at synthesis cell, and the shape growth of Ib-type large diamond is controlled by the distribution in the V-shaped growth area. We introduce different kinds of diamond large single crystals from five aspects. Firstly, the Ia-type diamond large single crystal can be obtained by the annealing treatment of Ib-type diamond under HPHT. The conversion rate of C centre to A centre for nitrogen in diamond is improved by optimizing the conditions of HPHT. Secondly, the Ib-type larger diamond is studied very much in the following areas: the analysis of its surface characteristic, the control of inclusions and cracks, the precipitation mechanism and the elimination measures of regrown graphite and the mass production technology of multiseed method. Thirdly, IIa-type large diamond single crystal is introduced in which the nitrogen getter is selected due to the ability Al and Ti (Cu) to getter nitrogen, the catalyst is selected because of its effect on the nitrogen content in the diamond synthesized with Fe or Ni based catalyst, and the elimination method of microcrystalline graphite precipitation is presented by analyzing its mechanism. Fourthly, the boron elements exist in IIb-type diamond and have influence on the growth characteristics of synthetic diamond. Fifthly, introduced is the research status of diamond synthesized with B, N, S, P doping elements, in which its individual substance or their compound is used as a doping source or boron and other elements with small radius are used as co-doping agent. Then S or P with B co-doping is more conducive to the improvement of the performance of n-type diamond large single crystal semiconductor. Therefore, it is proposed that the large diamond single crystal need strengthening in mass production of IIa-type large diamond single crystal, superconducting characteristics of IIb-type large diamond single crystal, and doping of n-type semiconductors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference89 articles.

1. Kiflawi I, Bruley J 2000 Diamond Relat. Mater. 9 87

2. Gong C S, Li S S, Zhang H 2016 Mater. Rev. 30 36
龚春生, 李尚升, 张贺 2016 材料导报 30 36

3. Tang J Y, Dong Q D, Gu Y 2000 Diamond Abras. Eng. 03 24
唐敬友, 董庆东, 谷岩 2000 金刚石与磨料磨具工程 03 24

4. Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102
胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102

5. Man W D, Lv J L, Wu Y Q, Chen P, Zhu J F, Dong W 2010 J. Gems Gemmol. 12 6
满卫东, 吕继磊, 吴宇琼, 陈朋, 朱金凤, 董维 2010 宝石和宝石学杂志 12 6

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3