Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor

Author:

Zhao Kai ,Mu Zong-Xin ,Zhang Jia-Liang ,

Abstract

Dielectric barrier discharge (DBD) can produce non-equilibrium plasma at atmospheric pressure, and it has become a hot point in recent years. For the DBD excited by pulsed or alternated currents, the effects of the loading performance of power supply, the matching between supply and discharge reactor and the discharge phenomena on its discharge are interesting issues. The studies of these issues are of great importance for understanding the DBD processes and improving the power supply efficiency. In this paper, the Lissajous figures of a DBD reactor with coaxial electrode configuration are measured. The loading performance of the DBD reactor and the dependences of excitation voltage and air flow rate on the dielectric layer equivalent capacitance are studied in atmospheric air. According to the experimental data and circuit modeling analysis, it is proved that the dielectric layer capacitance decreases with the increase of air flow rate, but increases with the increase of excitation voltage. The amplitude-frequency performance of the reactor reveals significant RLC circuit resonance. The resonance frequency of the reactor has the same behavior as its dielectric layer capacitance. Therefore it shows that the dielectric layer capacitance is the main factor for the resonance frequency evolution. A possible mechanism responsible for the dielectric layer capacitance is also presented.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3