Tuning of cyclotron resonant frequency and magnetic field of medical cyclotron

Author:

Wu Yong-Cun,Yang Xing-Lin,Shi Jin-Shui,Zhao Liang-Chao,He Xiao-Zhong,

Abstract

The high-frequency resonant cavity is affected by factors such as beam load, gravity and heat loss caused by cavity deformation during the actual operation of the medical cyclotron. The resonant frequency will shift to a certain extent, resulting in the high-frequency operation frequency varying with the resonant frequency of the resonator cavity. In order to meet the requirements for isochronous acceleration, the magnetic field strength should also be changed correspondingly when the high-frequency operation frequency changes, that is, the magnitude of the magnet current needs changing accordingly, so that the particle cyclotron frequency matches the high-frequency resonant frequency to overcome the sliding phase. Firstly, the static magnetic field model is established by finite element simulation software to simulate the average magnetic field of cyclotron under different magnet currents. Then the relationship between the magnetic field and the resonant frequency is theoretically analyzed. Finally, the relationship between the magnet current and the resonant frequency is obtained when the magnet current varies in a small interval. According to the optimal magnet current corresponding to different resonance frequencies, the automatic frequency tracking of magnet current is completed. In the case of ensuring the maximum carbon film beam, the optimal magnet current corresponding to different resonance frequencies is obtained, which makes the theory validated. According to the relationship, the magnet current is automatically adjusted, which overcomes the slip phase and ensures the stable output of the Faraday beam. The method enables the magnet current to be quickly and accurately find and track the cavity frequency, overcomes the slip phase caused by the frequency offset, and completes the stable output of the beam.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Gambhir S S, Czernin J, Schwimmer J 2001 J. Nucl. Med. 42 1S

2. Reske S N, Kotzerke J 2001 Eur. J. Nucl. Med. Mol. I. 28 1707

3. Fan M W 2000 Engineering 2 9
樊明武 2000 中国工程科学 2 9

4. Bertrand S, Vaneycken I, Lahoutte T, Covens P, Caveliers V, Kral E, Geets J M, Nactergal B, Ghyoot M, Devillet F 2018 J. Nucl. Med. 59 2106

5. Zhang J M, Tian J H 2006 Journal of Isotopes 19 241
张锦明, 田嘉禾 2006 同位素 19 241

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3