Author:
Xu Nian-Xi ,Gao Jin-Song ,Feng Xiao-Guo ,
Abstract
The requirements of frequency-selective surface (FSS) between high transparency in pass band and high reflectance in stop band are contradictory, when they have loaded medium on one side and receive a large range of illumination. In order to solve the contradiction, this paper employs a discrete particle swarm optimization approach (hereafter referred to as a DPSO). In order to seek a balanced FSS with high transparency in pass band and high reflectance in stop band, the periodic intervals and geometrical dimensions of FSS-structures are optimized and designed by using the DPSO method. Simulation and test results indicate that the FSS of super dense Y loop elements in a half-loaded medium structure is presented in this paper: the transparency in pass band and stop band are 80% and 30% respectively. The DPSO method will offer an excellent FSS for the radome which receives a large range of illumination, and on the other hand, it provides a theoretical guidance for the requirements of FSS between high transparency in pass band and high reflectance in stop band.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献