Author:
Xu Lei ,Dai Zhen-Hong ,Wang Sen ,Liu Bing ,Sun Yu-Ming ,Wang Wei-Tian ,
Abstract
Based on the first principles, we investigate the structures and electronic properties of fluorinated BC3, BC5, and BC7. Through the fluorination of BC structure, boron-carbon sheets are more stable than the hydrogenation. The results show that the system becomes semiconductor only on condition that the boron atoms can be bonded with the carbon atoms, whereas, the whole system will become the conductor when all atoms participate in the bonding. With the variation of fluorination degrees, semiconductor-metal transitions appear in the BC3 compounds and metal-semiconductor-metal transitions appear in the BC5 and BC7 sheet. Theoretical analyses find that pz orbital of boron atoms plays an important role in the electronic transition. Because of the rich electronic properties, this kind of fluorinated boron-carbon compound will become potential nanoelectronic materials and our results can play a role in guiding experiments.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献