First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface

Author:

Huang Can ,Li Xiao-Ying ,Zhu Yan ,Pan Yan-Fei ,Fan Ji-Yu ,Shi Da-Ning ,Ma Chun-Lan , ,

Abstract

Based on density functional theory calculations, we elucidate the atomic and electronic structures of Co atom of hexgonal BN (Co/h-BN). The interaction between magnetic moments of Co atoms is realized through Co-N_-B_ grid, which is indicated by the analysis of spin charge contour plot and partial density of states of each atom, where and denote the site of B or N atom close to and away from Co atom, respectively. Then the dispersion relations E(q) and E(-q) (q denotes the direction vector of spin spiral) between energy and wave vector of spin spiral in the opposite directions are calculated with generalized Bloch equations. In the incommensurate spin spiral calculations, all the magnetic moments of Co atom are arranged in the same plane that is perpendicular to the Co/h-BN film. The difference between E(q) and E(-q) is caused by the interface of Co/h-BN, where the symmetry of space perpendicular to the film is broken. Moreover, the effective Heisenberg exchange interaction (HBI) and Dzyaloshinsky-Moriya interaction (DMI) parameters between different neighbors (Ji and di) are derived by well fitting the ab initio magnon dispersion E(q) to HBI with DMI model and E(q)-E(-q) to DMI model, respectively. The J1 has a negative value and plays a major role, J3 is one order of magnitude smaller than J1, and other parameters are close to zero. Hence, Co/h-BN is triangular antiferromagnetic material with the q at k point in the first Brillouin zone. However, the spin spiral with the q at M point is only 2 meV larger than the basic state with the only negative J1 and smaller positive J2. The DMI is not shown in this interface with d1 and d2 close to zero. Based on the non DMI character and its stability in air, h-BN can be capped on other DMI interfaces. The reason that the DMI in Co/h-BN is much smaller than in Co/Gra is much larger height between Co and h-BN. It is 0.192 nm for h-BN but it is 0.156 nm for Co/Gra. We may reduce the height to enhance the DMI by other ways, such as adding electrical and magnetic fields in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3