Author:
Zhang Run-Lan ,Xing Hui ,Chen Chang-Le ,Duan Meng-Meng ,Luo Bing-Cheng ,Jin Ke-Xin , ,
Abstract
Hexagonal YMnO3 is a special kind of multiferroics which shows unique advantages in magneto-electric field due to its low permittivity and only c-axis polarization. However, its ferroelectric properties, especially domain structures, have not been intensively investigated. In this study, YMnO3 film about 270 nm in thickness is prepared on Si(100) substrate by sol-gel spin coating. Structure and morphology of the film are characterized by grazing incidence X-ray diffraction and atomic force microscopy. Domain structure and its reversal behavior on a nanoscale are examined by piezoresponse force microscopy (PFM). The leakage current and ferroelectric property are also investigated. The results show that the film displays a hexagonal perovskite structure with good crystallinity and has smooth surface with a root-mean-square roughness of 7.209 nm. PFM images and typical local piezoresponse loops reveal the good piezoelectric and ferroelectric properties of the YMnO3 film at room temperature. Meanwhile, the offsets of amplitude loop and phase loop are observed due to the internal electric field. Leakage current density of YMnO3 film is lower than 10-6 A·cm-2, so saturated hysteresis loop can be obtained.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献