Influence of source gas flow ratio on the proteins adsorbability of F-DLC film

Author:

Dai Yong-Feng ,Jiang Mei-Fu ,Yang Yi-Shang ,Zhou Yang ,

Abstract

The fluorinated diamond-like carbon (F-DLC) films are prepared by reactive magnetron sputtering under different gas flow radios with trifluoromethane (CHF3 ) and argon (Ar) used as source gases and pure graphite as a target on the surface of 316L stainless steel (SU316L). Factors which influence the protein adsorbability are discussed by double-stilled water, BCA and FTIR spectra. The results show that the surface of SU316L coated with F-DLC film could obviously reduce the number of adherent platelets and dramatically relieves the deformation of platelets, leading to a ratio of higher albumin to fibrinogen adsorption higher than that with using the SU316L substrates, which indicates that the SU316L coated with F-DLC film can improve the blood compatibility. The film has the highest ratio of albumin to fibrinogen adsorption and the best hemocompatibility when the ratio of gas flow is 2 ∶1. Furthermore, the measurements of the contact angle, the surface energy of films and FTIR spectra show that the ratio of albumin to fibrinogen adsorption and the hemocompatibility of F-DLC coated SU316L depend on the surface energy (hydrophobic nature) of films and the quantity of -CFx bonds (the ratio of F/C) contained in film. The modulating of blood compatibility of the films can be realized by the control of the ratio of source gas flow.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference57 articles.

1. Park J B, Kim Y K 2003 Biomaterials Principles and Applications(Boca Raton:CRC Press)p1

2. Brunski J B 2004 Biomaterials Science an introduction to Materials in Medicine(San Diego:Elsevier Academic Press)p137

3. Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3