Effects of preparation temperature of SiC intermediate layers on the hemocompatibility of SiC/F-DLC composite film
-
Published:2014
Issue:18
Volume:63
Page:185204
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
She Qing ,Jiang Mei-Fu ,Qian Nong ,Pan Yue ,
Abstract
A series of SiC intermediate layers with different preparation temperatures is prepared by radio frequency magnetron sputtering on 316L stainless steel substrates by use of SiC crystal target and Argon as source gases. And then depositing fluorinated diamond-like carbon films (F-DLC) on a series of SiC intermediate layers under the same deposition condition with trifluromethane (CHF3) and Argon as source gases, and pure graphite as a target, a series of SiC/F-DLC composite films are obtained. The results show that the composite films have stronger adhesion and better hemocompatibility than that of the F-DLC films. The structure evolves with preparation temperatures of SiC intermediate layers and SiC/F-DLC composite films are studied by their Raman and Infrared transmission spectra. The results show that the proportion of C=C bonds and density of C-C unsaturated bonds in the SiC intermediate layers can be modulated by controlling the preparation temperature of SiC intermediate layers. The composite films have better hemocompatibility, especially with about 500 ℃ preparation temperature, may be attributed to holding higher proportion of aromatic ring structure and higher ratio of F/C in the composite films than the others. Formation of a considerable number of Si-C bonds and C=C bonds between SiC and F-DLC films may be the direct cause of strong adhesion. The addition of modest SiC intermediate layers between 316L stainless steel substrates and F-DLC films is feasible and effective to enhance films adhesion and improve film hemocompatibility.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference28 articles.
1. Park J B, Kim Y K 2003 Biomaterials Principles and Applications (Boca Raton: CRC Press) p1
2. Brunski J B 2004 Biomaterials Science an Introduction to Materials in Medicine (San Diego: Elsevier Academic Press) p137
3. Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647
4. Yu Y T 2000 Bio-medical Materials (Tianjin: Tianjin University Press) p20 (in Chinese)[俞耀庭 2000 生物医用材料 (天津: 天津大学出版社) 第20页]
5. Gutensohn K, Beythien C, Bau J, Fenner T, Grewe P, Koester R, Padmanaban K, Kuehnl P 2000 Thrombosis Research 99 577
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献