Author:
Huang Jin ,Zhong Zhong ,Guo Wei-Dong ,Lu Wei , , ,
Abstract
With a new scheme of effective roughness length for heterogeneous terrain, based on the atmospheric boundary layer Monin-Obukhov similarity theory as well as flux and mass conservation principles, the statistical features of effective roughness length and its sensitivity to atmospheric stratification stability and roughness step for three surface category case are investigated. The results show that the effective roughness length is greater than the area-weighted logarithmic average one and the effective drag coefficient is more than 10% greater than the average one in most cases. The effective roughness length is much more sensitive to the roughness step, though it is dependent on the atmospheric stratification stability, and the relative percentage of effective roughness length and the effective drag coefficient will be 4 times and 3 times, respectively, for the double roughness step case. Therefore, the area-weighted average roughness length should be replaced by the effective one when the surface heterogeneity is considered in numerical models, which can represent the integrated effect of heterogeneous terrain.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献