Fractal characteristics of surface roughness and its effect on laminar flow in microchannels

Author:

Zhang Cheng-Bin ,Chen Yong-Ping ,Shi Ming-Heng ,Fu Pan-Pan ,Wu Jia-Feng ,

Abstract

The fractal characteristics of the surface roughness are investigated by using fractal geometry. A three-dimensional model of laminar flow in microchannels with surface roughness characterized by fractal geometry is developed and analyzed numerically. The Weierstrass-Mandelbrot function is introduced to characterize the multiscale self-affine roughness. The effects of Reynolds number Re, relative roughness, and fractal dimension on Poiseuille number are investigated and discussed. The results show that, different from the conventional channels, Poiseuille number in rough microchannels is no longer constant for different Re, but increases approximately linearly with Re, and is larger than the classical value. The flow over roughness features with high relative roughness induces recirculation and flow separation, which plays an important role in flow pressure drop. More specifically, roughness with larger fractal dimension, which yields more frequent variation in the surface profile, also results in a significant increase in pressure loss, even though at the same relative roughness. In addition, the accuracy of Poiseuille number calculated by the present model is verified by the experimental data available in the literature.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3