Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic

Author:

Li Kun ,Fang Shi-Liang ,An Liang ,

Abstract

A method of range and depth estimation was studied using a single hydrophone based on the dispersive characteristic and time-frequency analysis for low frequency underwater acoustic pulse signals in shallow water environment. First, the signal received on a single hydrophone can be decomposed into a series of modes within the frame work of normal mode theory, and then the dispersive characteristic of the propagating modes can be analyzed using the time-frequency analysis. In order to improve the time-frequency resolution, the use of the time-frequency distribution with adaptive radial-Gaussian kernel extracts the arrival time difference of propagating modes in dispersion curve, which can be used to estimate source range. Mode energy can be extracted using binary time-frequency mask filtering based on multi-mode joint matching processing; and the source depth can be estimated by comparing the differences of the mode energy of the real data and simulated replica data, yielding a contrast function. Simulation results from a shallow-water Pekeris waveguide show that the time-frequency distribution with adaptive radial-Gaussian kernel represents well the dispersion characteristics of the underwater acoustic pulse signals, provides higher time-frequency resolution and overcomes the problem of the inherent limit for the time resolution and frequency resolution in the traditional short-time Fourier transform, so that the modes can be separated and identified more easily in the time-frequency plane. From the result of the range estimation, the different mode combinations have different results of the range estimation. The range estimation result can be obtained accurately by using the mode with high energy in the time-frequency plane. The relative error in range estimation is less than 2% by using the mode with high energy. In terms of the depth estimation, the more the number of joint matching mode, the more sharp peak and low fake peaks the contrast function has, so that the depth estimation is further improved by incorporating more modes. This research has great significance for studying the extraction and separation of low frequency underwater acoustic pulse signals.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Porter M B, Tolstoy A 1994 J. Acoust. Soc. Am. 2 161

2. Xu W, Xiao Z, Yu L 2011 IEEE J. Ocean. Eng. 36 273

3. Wu K M, Ling Q, Wu L X 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, September14-16, 2011 p1

4. Wang Q, Jiang Q 2010 EURASIP J. Advances. Signal Processing. 483524 1

5. Frazer L N, Pecholcs P I 1990 J. Acoust. Soc. Am. 88 995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3