A method of estimating depth of moving sound source in shallow sea based on incoherently matched beam-wavenumber

Author:

Zhou Yu-Yuan,Sun Chao,Xie Lei,Liu Zong-Wei, , , ,

Abstract

Estimating the depth of a moving source with unknown source range is always a challenging problem in shallow water waveguides. The method of estimating the current motion source depth is sensitive to the unknown initial range and requires the horizontal synthetic aperture length formed by the motion of the source to be much longer than the modal interference period. Presented in this work is a method to estimate the depth of moving source based on the incoherently matched beam-wavenumber. In the beam-wavenumber domain, each peak amplitude only contains the modal excitation related to source depth, and each peak position corresponds to the mode propagation angle and the horizontal wavenumber. In this method, the received data are first used to perform beam-formed transformation in the vertical depth and horizontal synthetic aperture direction, and transformed into the beam-wavenumber domain. Then beam-wavenumber peak amplitudes are extracted and incoherently matched with the modal depth function to estimate the source depth. The proposed method is used to eliminate the unknown distance dependent term and improves the mode resolution by performing mode separation in the beam-wavenumber two-dimensional domain. The prominent feature of this method lies in realizing the source depth estimation at the unknown initial range and the horizontal synthetic aperture length which is smaller than the mode interference period. The simulation and SWellEx-96 experimental data processing results validate the superior performance of the proposed method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3