Author:
Li Sheng-Tao ,Li Guo-Chang ,Min Dao-Min ,Zhao Ni ,
Abstract
The interactions between high-energy charged particles and spacecraft insulating materials can cause deep dielectric charging and discharging, leading to spacecraft anomalies. In this paper, we establish a unipolar charge transport physical model of deep dielectric charging, according to the charge distribution and energy deposition of incident electrons and nonlinear dark conductivity and radiation induced conductivity (RIC) of material. Under the irradiation of electrons with different energies (from 0.1 to 0.5 MeV), the charge transport process of low density polyethylene (LDPE) can be obtained through solving the charge continuity equation and Poisson's equation. The calculation results show that the maximum electric field decreases with the increase of radiation electron energy. When radiation electron energy is less than 0.3 MeV, the distribution of the maximum electric field is similar to the change of the electron beam density. When the electron beam density is more than 3×10-9 A/m2, the maximum electric field will be greater than breakdown threshold (about 2×107 V/m), and it has higher risk of electrostatic discharge (ESD). With the increase of incident electron energy, the critical electron beam density will increase. When the radiation electron energy is 0.4 MeV, the critical electron beam density is 6×10-8 A/m2. When the radiation electron energy is more than 0.5 MeV, it seems that no electrostatic discharge (ESD) will occur in a range from 10-9 to 10-6 A/m2. The physical model has the great significance for further studying deep dielectric charging, evaluating the charged degree of spacecraft in space environment and designing protection devices.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference19 articles.
1. Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]
2. Jun I, Garrett H B, Kim W, Minow J I 2008 IEEE Transactions on Plasma Science. 36 2467
3. Qin X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [秦晓刚 2010 博士学位论文(兰州: 兰州大学)]
4. Quan R H 2009 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [全荣辉 2009 博士学位论文 (北京: 中国科学院研究生院)]
5. Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献