Validation through Experiment and Simulation of Internal Charging–Discharging Characteristics of Polyimide under High-Energy Electron Radiation

Author:

Wu JiangORCID,Zhang BoORCID,Zhi Yibo,He Minheng,Shang Penghui,Qian Yufeng

Abstract

Due to the injection of energetic particles, such as electrons in space environment, the internal charging–discharging characteristics of spacecraft dielectrics need to be evaluated for the safety of spacecraft, and the evaluation results from experiments and simulations should be comparatively validated. An in-site pulsed electroacoustic (PEA) measurement system under high-energy electron radiation was established for evaluating the charging characteristics of thick plate samples about 3 mm, while a joint simulation method based on Geant4 and COMSOL was also proposed. The deposited charge distributions were compared through experiment and joint simulation method under 0.7, 1.0 and 1.3 MeV for 30 min and 1.0 MeV for 10, 60 and 120 min, respectively. Meanwhile, the electrostatic discharging characteristics were also comparative evaluated by both methods under 0.3 MeV for 20 min under 5, 10 and 15 µA beam current, and the total discharging times and initial discharging time were compared and analyzed. Overall, a good consistency existed between experimental and simulation results of charging–discharging characteristics under electron radiation while the difference was also analyzed in the perspective of dielectric properties, such as charge leakage by conduction. Through the comparative study, both evaluation methods are validated, which offers effective reference for the safety evaluation of spacecraft dielectrics in future.

Funder

Shaanxi Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3