Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots

Author:

Chen Qiu-Cheng ,

Abstract

In the past few years, many interesting optical phenomena, such as electromagnetically induced transparency, coherent optical control of a biexciton, slow light and optical solitons, have been investigated in single quantum dot (QD). However, in an actual semiconductor device there exist many quantum dots (QDs). Recently, QD molecule, which is comprised of double semiconductor QDs coupled by tunneling coupling, has been proposed. In this new semiconductor structure, many complex but interesting phenomena have been discovered. In fact, three QD molecules may also be composed of three QDs, which can be coupled by interdot tunneling coupling. For the three semiconductor QDs molecules, the influence of the interdot tunneling coupling strength must be considered. So, in this paper, with considering that a weak, -linear-polarized probe field can form left- and right-polarized components under the control of the parallel magnetic field, and when they are combined with the tunneling coupling among the QDs, an electromagnetically induced transparency medium of a five-level M configuration semiconductor three QDs is proposed. Subsequently, the nonlinear Faraday rotation in the semiconductor three QDs is analytically studied. For the linear case, the linear dispersion relation is driven by a method of multiple scales. Then, by studying the linear optical properties, it is found that the system exhibits a single tunneling induced transparency window due to the quantum destructive interference effect driven by the interdot tunneling coupling under appropriate conditions, and the width of the tunneling induced transparency window can be effectively controlled by the strength of the interdot tunneling coupling. Meanwhile, the switch regulatory effect, which changes from the anomalous dispersion regime to the normal dispersion regime, is likely to be achieved by changing the strength of the interdot tunneling coupling. For the nonlinear case, two coupled nonlinear Schrdinger equations, which govern the evolutions of left- and right-polarized components of the weak, -linear-polarized probe field under the applied longitudinal magnetic field, are derived. By studying the nonlinear properties, it is shown that a large nonlinear Faraday rotation angle can be obtained due to the quantum interference effect which is induced by the interdot tunneling coupling with a very low absorption of the weak, -linear-polarized probe field. In addition, it is also found that the nonlinear Faraday rotation direction is opposite to line Faraday rotation for the same magnetic field. What is more, the nonlinear Faraday rotation angle grows bigger than the linear Faraday rotation. These results mean that the Faraday rotation of the three semiconductor QDs with the electromagnetically induced transparency can be more effectively controlled by the nonlinear effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3