Quantum entanglement concentration for photonic polarization state assisted by electron spin

Author:

Zhao Rui-Tong ,Liang Rui-Sheng ,Wang Fa-Qiang ,

Abstract

In order to assure the security of the long-distance quantum communication, the maximum entangled state is necessary. However, the decoherence of the entanglement is inevitable because of the channel noise and the interference of the environment. Quantum entanglement concentration can be used to convert a non-maximum entangled state into a maximum one. In previous entanglement concentration proposals, we need the initial coefficients of non-maximum entangled state or repeat the entanglement concentration process to improve the possibility of success, which reduces the efficiency of the entanglement concentration. A more efficient entanglement concentration for phontonic polarization state is proposed in this paper, which is based on the interaction between circularly polarized light and quantum dot-cavity system. An auxiliary photon is introduced to connect two distant participants. To overcome the channel noise, the auxiliary photon transmits though two channels between the two participants. The photons interact with coupled quantum dot-cavity before and after the auxiliary photon transmission. Then the states of spins and auxiliary photon are measured, and the maximum phontonic polarization entangled state is obtained by single-photon operations according to the measurement results. The success possibility of the proposed scheme is 1 in ideal conditions, that is, the concentration can be realized deterministically. However, the cavity leakage is unavoidable, so the fidelity of the entanglement concentration is calculated by taking one of the measurement results for example. The results show that the influences of the initial coefficients of non-maximum entangled state on the fidelity can be ignored in most cases, which saves a mass of photons used to measure the initial coefficients of the non-maximum entangled state. The fidelities with varying coupling strengths and cavity leakages are also shown in the paper. In the case of weak coupling, the fidelity is low and varies sharply with cavity leakage. Fortunately, the fidelity will plateau in a strong coupling case, and reaches 99.8% with a coupling strength 0.7 for diverse cavity leakages. Much progress has been made in the study of the strong coupling between quantum dot and optical cavity, which can satisfy the requirement of our entanglement concentration. So the proposed scheme is feasible in the current experimental conditions. In general, our proposal still maintains high fidelity even considering the cavity leakage, and the initial information about partially entangled state and the repetition of the entanglement concentration process are not required. This not only improves the security of the quantum entanglement concentration, but also contributes to efficient quantum information processing with less quantum resources. These characteristics increase the universality and efficiency of the entanglement concentration, thus assuring the quality of the long-distance quantum entanglement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on two test methods of polarizer extinction ratio;9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics;2019-01-24

2. Quantum error rejection and fault tolerant quantum communication;Acta Physica Sinica;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3